ECE 376 - Homework #3

Binary Outputs, and Timing. Due Monday, September 13th, 2021
Please make the subject "ECE 376 HW#3" if submitting homework electronically to Jacob_Glower @yahoo.com (or on blackboard)

Solder your PIC board (50pt)

Demonstrate that your PIC board works

In person, video, delmo during Zoom office hours
« 50pt: Board you built powers up & you're able to download code
« 25pt: Board you built is soldered but not working (swap for a working board)

note: If your board doesn't work, we have working boards we can swap with you. You'll need a working
board for the rest of the course.

Binary Outputs

1) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at OmA (off)
and 20mA (on). Assume the specifications for the LEDs are:

Color VI @ 20mA mcd @ 20mA
red 2.0V 10,000
green 3.2V 10,000
blue 3.2V 10,000
_(5v=20v) _
R, = (2290) _ 1300

Rg (5V—3.2V) =90Q

20mA

_[5v=32v) _
R), _< 20mA) =900
RC2 RC1 RCO
Rr Rg Rb
150 90 %2
2.0V 3.2V 3.2V

red green XZ blue !

2) Design a circuit which allows your PIC board to turn on and off a 10W LED. The specs for the LED
are:

Vi=10.0-11.0V
Current = 700mA to 1000mA
550 - 650 Lumens (equivalent to a 60W light bulb).

Assume
« a?24V power supply
6144 NPN transistor
- gain =200
- Vce(sat) = 0.36V

Rc (sets the current to 1000mA)

Rc — (24V—11V—0.36V) =12.6Q

1000mA

Rb: Saturate the transistor.

The base current has to be at least

Ib > Ic — (IOOOMA) ZSmA

B 200

Pick something bigger than SmA, less than 25mA (the most a PIC can outout). Let
Ib = 10mA

then

R, = (SV——‘”V) =430Q

10mA

24V

Ic= 1000mAi
Rc=12.6

11.36V
LED
PIC 0.36V
6144
RCO NPN
—
Ib =10mA

Assembler Coding

3) Determine the contents of the W register and memory locations A and B after each assembler

command

Command W B

; Start 7 9
addwf A, W 15 9
subwf B,F 15 250 (-6)
incf A,W 9 250
incf B,F 9 251
movlw 23 23 251
andwf A,F 23 251
iorwf B, W 255 251

Timing:
4) Write a program which outputs the music note G2 (98.00 Hz)

+ Verify the frequency of the square wave you generate
« (Pano Tuner app on you cell phone works well for this)

98 Hz gives a wait loop of

N= (M) =51,020.04 clocks

2-Hz

#include <pl8f4620.inc>

; Variables
CNTO EQU 1
CNT1 EQU 2

; Program
org 0x800
call Init
Loop:
incf PORTC,F
call Wait
goto Loop

; ——— Subroutines ——-—

Init:

clrf TRISA
clrf TRISB
clrf TRISC
clrf TRISD
clrf TRISE
movlw OxO0OF
movwf ADCON1
return

; Wait 51,020 clocks (actual wait time is 51,260 clocks

Wait:
movliw 51
movwf CNT1
Wl:
movlw 100
movwf CNTO
WO :
nop
nop
nop
nop
nop
nop
nop
decfsz CNTO, F
goto WO
decfsz CNT1, F
goto W1
return

end

Using Pano Tuner, the actual freugncy is 97.6Hz

Lab: 4 Key Sharp Piano

5) Requirements:

Inputs: Buttons on RBO/RB1/RB2/RB3

Outputs: RCO

Relationship: Output a square wave on RCO based upon the button pressed:
- RBO F#3 185.00 Hz

- RBI G#3 207.65Hz

- RB2 A#3 223.08Hz

- RB3 C#4 277.18Hz

6) Analysis, Code, and Flow Chart. Give computations for resistor values (if any), timing, assembler
code, and a flow chart for your code

The number of clocks needed for each note are:

10,000,000

2-Hz
N is created using a series of loops:

N =5AB + 5B + 5 + 13 (main routine = 13 clocks)

185Hz:

N =27.,027

A =36,B =146, N =27028
207.65 Hz:

N =24,079

A =28, B=166, N =24088
233.08 Hz

N =21,452

A=31, B=134, N=21458
277.18 Hz

N = 18,038

A=16, B= 212, N=18,038

Code & Flow Chart

; Program
org 0x800
call Init
Loop:
movlw O
cpfseq PORTB ; if any button is pressed
btg PORTC, 0

btfsc PORTB, 0

call BO
btfsc PORTR, 1

call Bl
btfsc PORTB, 2
call B2
btfsc PORTEB, 3
call B3

goto Loop
; ——— Subroutines —--—-

Init:
clrf TRISA ;PORTA is output
movlw OxFF
movwf TRISB ;PORTB is input
clrf TRISC ; PORTC is output
clrf TRISD ;PORTD is output
clrf TRISE ;PORTE is output
movlw OxO0OF
movwf ADCON1 ;everyone is binary
return

BO:
movlw 21
movwf CNT1
BOa:
movlw 164
movwf CNTO
BOb:
nop
nop
decfsz CNTO, F
goto BOb
decfsz CNT1, F
goto BOa
return

Bl:
movlw 28
movwf CNT1
Bla:
movlw 166
movwf CNTO
Blb:
nop
nop
decfsz CNTO, F
goto Blb
decfsz CNT1, F
goto Bla
return

B2:
movlw 31

movwf CNT1
B2a:

movlw 134

movwf CNTO
B2b:

nop

nop

decfsz CNTO, F

goto B2b

decfsz CNT1, F

goto B2a

return

B3:
movlw 16
movwf CNT1
B3a:
movlw 212
movwf CNTO7
B3b:
nop
nop
decfsz CNTO, F
goto B3b
decfsz CNT1, F
goto B3a
return

end

8) Validation: Collect data in the lab to verify your code works.
For a binary clock, is it counting once per second?
For the dice, are the results random? Is the beep 220Hz? Is it 1 second?
For the piano, is each note correct in frequency?

L § LT LR
+
4t [t

Q2EE. -

C2EE. -

Frequency Hz Measured Error (%)
F#3 185.00 Hz 185.3Hz +0.162%
G#3 207.65 Hz 207.9Hz +0.120%
A#3 223.08 Hz 233.4Hz +0.137%
C#4 277.18 Hz 277.4Hz +0.079%

9) Demonstration: Demonstrate that your embedded system works (either in person or with a video)

