
ECE 376 - Homework #3
Binary Outputs, and Timing. Due Monday, September 13th, 2021

Please make the subject "ECE 376 HW#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Solder your PIC board (50pt)

Demonstrate that your PIC board works

In person, video, de1mo during Zoom office hours

50pt: Board you built powers up & you're able to download code

25pt: Board you built is soldered but not working (swap for a working board)

note: If your board doesn't work, we have working boards we can swap with you. You'll need a working

board for the rest of the course.

Binary Outputs

1) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off)

and 20mA (on). Assume the specifications for the LEDs are:

Color Vf @ 20mA mcd @ 20mA

red 2.0V 10,000

green 3.2V 10,000

blue 3.2V 10,000

Rr = 


5V−2.0V

20mA


 = 150Ω

Rg = 


5V−3.2V

20mA


 = 90Ω

Rb = 


5V−3.2V

20mA


 = 90Ω

RC2 RC1 RC0

9090150

Rr Rg Rb

2.0V 3.2V 3.2V

red green blue

2) Design a circuit which allows your PIC board to turn on and off a 10W LED. The specs for the LED

are:

Vf = 10.0 - 11.0V

Current = 700mA to 1000mA

550 - 650 Lumens (equivalent to a 60W light bulb).

Assume

a 24V power supply

6144 NPN transistor

- gain = 200

- Vce(sat) = 0.36V

Rc (sets the current to 1000mA)

Rc = 


24V−11V−0.36V

1000mA


 = 12.6Ω

Rb: Saturate the transistor.

The base current has to be at least

Ib >
Ic

β = 


1000mA

200

 = 5mA

Pick something bigger than 5mA, less than 25mA (the most a PIC can outout). Let

Ib = 10mA

then

Rb = 


5V−0.7V

10mA


 = 430Ω

24V

Rc = 12.6

LED

Rb = 430

Ic = 1000mA

Ib = 10mA

PIC

6144
NPNRC0

0.36V

11.36V

0.7V

Assembler Coding

3) Determine the contents of the W register and memory locations A and B after each assembler

command

Command W A B

; Start 7 8 9

addwf A,W 15 8 9

subwf B,F 15 8 250 (-6)

incf A,W 9 8 250

incf B,F 9 8 251

movlw 23 23 8 251

andwf A,F 23 0 251

iorwf B,W 255 8 251

Timing:

4) Write a program which outputs the music note G2 (98.00 Hz)

Verify the frequency of the square wave you generate

(Pano Tuner app on you cell phone works well for this)

98 Hz gives a wait loop of

 clocksN = 


10,000,000

2⋅Hz


 = 51, 020.04

#include <p18f4620.inc>

; Variables

CNT0 EQU 1

CNT1 EQU 2

; Program

org 0x800

call Init

Loop:

incf PORTC,F

call Wait

goto Loop

; --- Subroutines ---

Init:

clrf TRISA

 clrf TRISB

clrf TRISC

clrf TRISD

clrf TRISE

movlw 0x0F

movwf ADCON1

return

; Wait 51,020 clocks (actual wait time is 51,260 clocks

Wait:

movlw 51

movwf CNT1

W1:

movlw 100

movwf CNT0

W0:

nop

nop

nop

nop

nop

nop

nop

decfsz CNT0, F

goto W0

decfsz CNT1, F

goto W1

return

end

Using Pano Tuner, the actual freuqncy is 97.6Hz

Lab: 4 Key Sharp Piano

5) Requirements:

Inputs: Buttons on RB0 / RB1 / RB2 / RB3

Outputs: RC0

Relationship: Output a square wave on RC0 based upon the button pressed:

- RB0 F#3 185.00 Hz

- RB1 G#3 207.65 Hz

- RB2 A#3 223.08 Hz

- RB3 C#4 277.18 Hz

6) Analysis, Code, and Flow Chart. Give computations for resistor values (if any), timing, assembler

code, and a flow chart for your code

The number of clocks needed for each note are:

N = 


10,000,000

2⋅Hz




N is created using a series of loops:

N = 5AB + 5B + 5 + 13 (main routine = 13 clocks)

185Hz:

N = 27,027

 A = 36, B = 146, N = 27028

207.65 Hz:

N = 24,079

A = 28, B = 166, N = 24088

233.08 Hz

N = 21,452

A = 31, B = 134, N = 21458

277.18 Hz

N = 18,038

 A = 16, B = 212, N = 18,038

Code & Flow Chart

; Program

org 0x800

call Init

Loop:

 movlw 0

 cpfseq PORTB ; if any button is pressed

btg PORTC,0

btfsc PORTB,0

 call B0

btfsc PORTB,1

 call B1

btfsc PORTB,2

call B2

btfsc PORTB,3

call B3

goto Loop

; --- Subroutines ---

Init:

clrf TRISA ;PORTA is output

 movlw 0xFF

movwf TRISB ;PORTB is input

clrf TRISC ;PORTC is output

clrf TRISD ;PORTD is output

clrf TRISE ;PORTE is output

movlw 0x0F

movwf ADCON1 ;everyone is binary

return

B0:

movlw 21

movwf CNT1

B0a:

movlw 164

movwf CNT0

B0b:

nop

nop

decfsz CNT0, F

goto B0b

decfsz CNT1, F

goto B0a

return

B1:

movlw 28

movwf CNT1

B1a:

movlw 166

movwf CNT0

B1b:

nop

nop

decfsz CNT0, F

goto B1b

decfsz CNT1, F

goto B1a

return

B2:

movlw 31

movwf CNT1

B2a:

movlw 134

movwf CNT0

B2b:

nop

nop

decfsz CNT0, F

goto B2b

decfsz CNT1, F

goto B2a

return

B3:

movlw 16

movwf CNT1

B3a:

movlw 212

movwf CNT07

B3b:

nop

nop

decfsz CNT0, F

goto B3b

decfsz CNT1, F

goto B3a

return

end

8) Validation: Collect data in the lab to verify your code works.

For a binary clock, is it counting once per second?

For the dice, are the results random? Is the beep 220Hz? Is it 1 second?

For the piano, is each note correct in frequency?

Frequency Hz Measured Error (%)

F#3 185.00 Hz 185.3Hz +0.162%

G#3 207.65 Hz 207.9Hz +0.120%

A#3 223.08 Hz 233.4Hz +0.137%

C#4 277.18 Hz 277.4Hz +0.079%

9) Demonstration: Demonstrate that your embedded system works (either in person or with a video)

