
ECE 376 - Homework #4
C Programming and LCD Displays. Due Monday, September 27th

Please make the subject "ECE 376 HW#4" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app

like Piano Tuner

- RC1 is 1/2 the frequency of RC0, RC2 is 1/4th, RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =



10,000,000

2⋅Hz




1a) Counting mod 256

- note: if using your cell phone to measure the frequency, you might have to try different pins on

PORTC until you get one in the audio range. Each pin is 1/2 the frequency of the previous pin

unsigned char i
while(1) {
 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 }

f = 1302.8Hz

N = 3837.89 clocks

N/ 256 = 14.992 (15)

It takes 15 clocks to count mod 256

1b) Counting mod 255

unsigned char i
while(1) {
 i = (i + 1)% 255;
 if(i == 0) PORTC += 1;
 }

f = 41.1 Hz

N = 121,654 clocks

N / 255 = 477.07

It takes 477 clocks to count mod 255

1c) Integer Multiply

 unsigned int A, B, C;
 unsigned char i;

A = 0x1234;
B = 0x5678;
while(1) {

 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 C = A*B;
 }

 f = 42.3Hz

N = 118,203

N / 256 = 461.7

- 15 clocks to count mod 256

- plus 447 clocks to do an integer multiply

It taekes 467 (ish) clocks to do an integer multiply

1d) Floating point multiply

float A, B;
A = 1.0002;
B = 0.02;
while(1) {

 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 B = B * A;
 }

f = 85.3Hz

N = 58,616.6

N / 256 = 228.97 (229 clocks)

- 15 clocks to count mod 256

- plus 214 clocks to do a floating point multiply

$65 Cat Nap Alarm

2) Write a C program which turns your PIC into an alarm clock with a resolution of 100ms

On reset, TIME is set to 0 (0.0 seconds)

RB0: When you press RB0, TIME is reset to 150 (15.0 seconds)

Every 100ms, TIME is decremented by one, stopping at 0.0 seconds

When TIME reaches zero, PORTA turns on for 1 second (approx)

// Global Variables

const unsigned char MSG0[20] = "HW4 Catnap Alarm ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

// Main Routine

void main(void)
{
 unsigned int SEC;
 unsigned int i, FLAG;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init(); // initialize the LCD

 SEC = 0;
 FLAG = 0;

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 Wait_ms(70);

 while(1) {
 RC0 = !RC0;

 if(RB0) SEC = 150;

 LCD_Move(1,0); LCD_Out(SEC, 3, 1);

 if(SEC) {
 SEC -= 1;
 if(SEC == 0) {
 PORTA = 0xFF;
 Wait_ms(1000);
 PORTA = 0;
 }
 }
 RC0 = 1;
 Wait_ms(86);
 RC0 = 0;
 }
 }

3) How many lines of assembler does your code compile into?

HI-TECH C PRO for the PIC18 MCU Family (Lite)

Summary:

 Program space used 916h (2326) of 10000h bytes (3.5%)

 Data space used 29h (41) of F80h bytes (1.0%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

Running this compiler in PRO mode, with Omniscient Code Generation enabled,often
produces code which is 60% smaller and at least 400% faster than inLite mode. The
HI-TECH C PRO compiler output for this code could be1382 bytes smaller and run 4
times faster.See http://microchip.htsoft.com/portal/pic18_profor more
information.

Each intruction takes 2 bytes, meaning 2326/2 assembler instrctions

ans: 1163 lines of assebler

4) Collect data to determine how accurate your program is (one count = 100ms ideally)

RC0 = 1 for 85.1ms

- time spent in Wait_ms(86)

RC0 = 0 for 14.9ms

- time for the rest of the routine

Period = 100ms

- each count is 100ms

Wait_ms(86) actually takes 85.1ms (

PIC Banjo

5) Requirements: Specify the inputs / outputs / how they relate.

Inputs: Buttone RB0 .. RB3

Outputs: RC0

Relationship

Play the following notes when a button is pressed

RB0: C4 (261.63Hz)

RB1: G4 (392.00Hz)

RB2: B3 (246.94Hz)

RB3: D4 (293.66Hz)

Tolerance: +/- 1%

6) C code, flow chart, and resulting number of lines of assembler

To generate a note, the following test code was used

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 while(1) {
 if(RB0) {
 RC0 = !RC0;
 for(i=0; i<1000; i++);
 }
 }
 }

The results was a 312.2Hz square wave.

