ECE 376 - Homework \#7

Timer 2 Interrupts.

Measuring Time to 0.1 ms with Timer2 Interrupts

One way to measure capacitance is to measure the RC time constant.

- Charge up a capacitor to +5 V (make RA1 output, set RA1 to 5 V , wait 1 second)
- Change RA1 to be an analog input
- Measure the time when the voltage drops to $800 \mathrm{~A} / \mathrm{D}$ reading
- Measure the time when the voltage drops below $400 \mathrm{~A} / \mathrm{D}$ reading

C is then

$$
\begin{aligned}
& 500=1000 \cdot \exp \left(\frac{-t}{R C}\right) \\
& \left(t_{2}-t_{1}\right)=R C \cdot \ln (2) \\
& C=\left(\frac{N}{10,000}\right)\left(\frac{1}{R \cdot \ln (2)}\right)=1.44 \cdot 10^{-9} N \text { Farads } \\
& C=1.4427 N \mathrm{nF}
\end{aligned}
$$

1) Write a C program which

- Measures time to 0.1 ms using Timer2 interrupts
- Measures a capacititor connected between RA1 and ground ($\mathrm{R}=100 \mathrm{k}$), and
- Displays the value of C.
<insert C code >

2) Measure the value of two (or more) 10.0 uF capaitors using the correct polarity (different values are OK). From this data, determine the 90% confidence interval for a given 10 uF capacitor
10uF: Correct polarity: $\{10.067,9.904,10.028,9.983,10.058\}$

- mean $=10.0080 \mathrm{uF}$
- $\operatorname{std}=0.0667 \mathrm{uF}$
-9.8657uF $<\mathrm{C}<10.1503 \mathrm{uF} \quad \mathrm{p}=0.9$

3) Measure the value of two (or more) 10.0 uF capaitors using incorrect polarity. From this data, determine the 90% confidence interval for a given 10 uF capacitor when used with the incorrect polarity.
10uF Incorrect Polarity: \{3.762, 4.255, 3.994, 4.007, 3.961\}

- mean $=3.9958 \mathrm{uF}$
- $\operatorname{std}=0.1755 \mathrm{uF}$
- 3.6217uF $<\mathrm{C}<4.3699 \mathrm{uF} \quad \mathrm{p}=0.9$

pdf for a 10uF capacitor with correct polarity (blue) and incorrect polarity (red)

Generating Frequencies with Timer2

4 Write a program which outputs the music note D\#3 (155.56 Hz) using Timer2 interrupts

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=32,141.19
$$

Come up with $A * B * C=N$ subject to

- $\mathrm{A}=[1 . .16]$
- $\mathrm{B}=[1 . .256]$
- $\mathrm{C}=\{1,4,16\}$

Try

- $\mathrm{C}=16$
- $\mathrm{A}=10$
- $\mathrm{B}=201$
- $\mathrm{N}=\mathrm{A} * \mathrm{~B} * \mathrm{C}=32,160$ (off by $+0.056 \%$)

T2CON $=0 \times 4 \mathrm{~F}$														
7	6	5	4	3	2	1	0							
0	1	0	0	1	1	1	1							
	$\mathrm{~A}=10$									$\mathrm{C}=16$				

```
// set up Timer2 123.47Hz
    T2CON = 0x4F;
    PR2 = 201;
    TMR2ON = 1;
    TMR2IE = 1;
    TMR2IP = 1;
    PEIE = 1;
```


Timer2 Roulette Wheel

4) Requirements:

Inputs:

- RB0: Spin the roulette wheel

Outputs:

- LCD Display: Display the current ball position (0..7)
- PORTC: Display the current ball position (0..7)
- Speaker: Beep each time the ball moves one spot

Relationship:

- Timer2 counts in the background, one count every 0.1 ms
- When you press RB0, a random number, N , is determined by taking the current time mod 8
- The routlette ball then moves $40+\mathrm{N}$ spaces
- Each movement beeps and waits $10 . .1000 \mathrm{~ms}$ (starting at $10 \mathrm{~ms} /$ step, ending at $1000 \mathrm{~ms} / \mathrm{step}$)

5) C-Code and flow chart.

6) Data. Your raw data (at least two data points)

Wining numbers are:

- $5,1,5,4,4,2,2,6,0,0,4,5,4,4,6,1,5,2,7,3$

7) Statistical Analysis: Analyze your data to determine

Do a chi-squared test. There isn't enough date for 8 bins (20 data points), so group the data into two bins: even \& odd numbers

Bin	p	np	N	chi-squared
$0,2,4,6$	0.5	10	11	0.1
$1,3,5,7$	0.5	10	9	0.1
				Total

From StatTrek, a chi-squared critical value of 0.2 corresponds to a probability of 0.35
There is a 35\% chance that the die is loaded (no conclusion)
8) Demo (in person during Zoom office hours or in a video)

