
ECE 376 - Homework #9
INT Interrupts, Timer1 Capture - Timer1 Compare.

Timer1 Capture:

Problem 1-5) Use Timer1 Capture to measure time to 1 clock (100ns). Some options are:

1) Requirements: Define the inputs, outputs, and how they relate.

Part of the requirement must be to measure time to 100ns (i.e. use Timer1 Capture interrupts)

Measure a resistor with the period, T, measured with a resolution of 100ns

T = (R1 + 2R2) ⋅ C ⋅ ln(2)

R1 = 1k

R2 = 3.3k

C = 1uF (varies)

Computations

C = 


T

(R1+2R2)ln(2)


 = 0.0001898T

With T measured to 100ns

N = 107
T

FaradsC = 18.98 ⋅ 10−12
N

pFC = 18.98N

If you capture every 256th rising edge

 pFC = 


18.98

256

N = 0.07379N

2) C-Code and flow chart.

< insert code >

3) Test: Collect data in lab to verify that your interrupts are working properly.

Toggle RA1 every Timer1 interrupt (2^16 clocks).

Expected period = 2 * 65,536 = 131,072 clocks

Measured period = 13.1063808ms = 131,063 clocks

Measure a 2ms square wave (555 timer with 0.36uF)

Measured period = 1.7807872ms

Calculated period = 1.8960ms

4) Validation: Collect data to validate your design works.

C T

(ms)

uF (meas) C
Lovum multimeter

Error

10uF 42.6246ms 8.036608 uF 10.20uF -21.21 %

1uF 5.124096 ms 0.968528 uF 1.059 uF -8.54%

0.18uF 0.8742656 ms 0.165136 uF 0.1785 uF -7.49%

0.1uF 0.5922362 ms 0.112130 uF 0.1038 uF +8.02%

0.015uF 0.0775216 ms 0.014638 uF 0.01530 uF -5.33%

note: both readings might be correct. C is specified at 1kHz. Our meter uses 23Hz - 13kHz.

5) Demo

Timer1 Compare:

Problem 6-10) Use Timer1 Compare to output precise frequencies. Some suggestions are:

Precise 8 key piano: Play notes A3..A4 on RC0 when you press buttons RB0..RB7

Electronic Trombone: Play note A3 (A2D=0) to A4 (A2D = 1023) on RC0 when you press RB0

Input a number from 100 to 9999 with a keypad. Output that frequency on RC0

Other...

Can you detect a 1% change in frequency at 440Hz?

6) Requirements: Press RB0 to start.

The PIC flips a coin (head or tails)

The PIC will then play 440Hz for 500ms

Then pause 100ms

Then play either 440Hz or 444.44Hz for 500ms, depending upon the coin toss (random).

The operator then must press a button

RB0 if the notes sound like they're the same

RB1 if the notes sound like they're different

The PIC then records whether you were correct or not, displays the running total on the LCD, the

repeats.

7) C-Code and flow chart.

< insert code here >

8) Test: Collect data in lab to verify that your interrupts are working properly.

Test Code: Play 440.0Hz

 while(1) {

 N = 11354 - 50; // 440Hz

 PLAY = 1;

 }

Resulting frequency = 441.0Hz

Test Code: Play 444.44Hz

 while(1) {

 N = 11251; // 440Hz

 PLAY = 1;

 }

Resluting frequency = 445.0Hz

Test Code: Random number generator

 while(1) {

 while(RB0);

 while(!RB0);

 DIE = TMR1 & 1;

 LCD_Move(0,0); LCD_Write(DIE + 48);

 }

Result

00100000111010110001010100010101111110100111110011101

25 0's

28 1's

9) Validation: Collect data to validate your design works.

18 tests

Correct 15 times

Incorrect 3 times

Guess p np N chi-squared

correct 0.5 9 15 4.00

incorrect 0.5 9 3 4.00

Total 8.00

From StatTrek, a chi-scored critical value of 8.00 with 1 degree of freedom corresponds to a probability

of 0.995

I can be 99.5% certain that I can hear a 1% difference in frequency at 440Hz (i.e. I'm not

guessing)

10) Demo

