ECE 376 - Homework \#10

z-Transforms and Digital Filters. Due Monday, November 15th

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{20(s+2)}{(s+1)(s+3)(s+10)}\right) X
$$

a) What is the differential equation relating X and Y ?
multiply out and cross multiply

$$
\begin{aligned}
& Y=\left(\frac{20 s+40}{s^{3}+14 s^{2}+43 s+30}\right) X \\
& \left(s^{3}+14 s^{2}+43 s+30\right) Y=(20 s+40) X
\end{aligned}
$$

'sY' means 'the derivative of y ', so (using prime notation for derivative):

$$
\begin{aligned}
& y^{\prime \prime \prime}+14 y^{\prime \prime}+43 y^{\prime}+30 y=20 x^{\prime}+40 x \\
& \frac{d^{3} y}{d t^{3}}+14 \frac{d^{2} y}{d t^{2}}+43 \frac{d y}{d t}+30 y=20 \frac{d x}{d t}+40 x
\end{aligned}
$$

b) Find $y(t)$ assuming

$$
x(t)=2+4 \sin (3 t)
$$

Use superposition and treat this as two separate problems
$x_{1}(t)=2$

$$
s=0
$$

$$
X=2
$$

$$
Y=\left(\frac{20 s+40}{s^{3}+14 s^{2}+43 s+30}\right)_{s=0}(2)=2.667
$$

$$
y_{1}(t)=2.667
$$

$$
x_{2}(t)=4 \sin (3 t)
$$

$$
s=j 3
$$

$$
X=0-j 4 \quad \text { real }=\text { cosine }, \text { imag }=- \text { sine }
$$

$$
Y=\left(\frac{20 s+40}{s^{3}+14 s^{2}+43 s+30}\right)_{s=j 3} \cdot(0-j 4)=-2.0061-j 0.4648
$$

$$
y_{2}(t)=-2.0061 \cos (3 t)+0.4648 \sin (3 t)
$$

$y(t)=y_{1}+y_{2}=2.667-2.0061 \cos (3 t)+0.4648 \sin (3 t)$
2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.2(z+1)}{(z-0.98)(z-0.96)}\right) X
$$

a) What is the difference equation relating X and Y ?
multiply out and cross multiply

$$
\begin{aligned}
& Y=\left(\frac{0.2 z+0.2}{z^{2}-1.94 z+0.9408}\right) X \\
& \left(z^{2}-1.94 z+0.9408\right) Y=(0.2 z+0.2) X
\end{aligned}
$$

' zY ' means ' $\mathrm{y}(\mathrm{k}+1)^{\prime}$ ' or 'the next value of $\mathrm{y}(\mathrm{k})^{\prime}$

$$
y(k+2)-1.94 y(k+1)+0.9408 y(k)=0.2 x(k+1)+0.2 x(k)
$$

b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=2+3 \sin (4 t)
$$

Use superposition and treat this as two separate problems

$$
\begin{aligned}
x_{1}(t)= & 2 \\
& s=0 \\
z & =e^{s T}=1 \\
Y & =\left(\frac{0.2(z+1)}{(z-0.98)(z-0.96)}\right)_{z=1} \cdot(2)=1000 \\
& y_{1}(t)=1000 \\
x_{2}(t)= & 3 \sin (4 t) \\
& s=j 4 \\
z & =e^{s T}=e^{j 0.04}=1 \angle 2.292^{0} \\
& X=0-j 3 \\
& Y=\left(\frac{0.2(z+1)}{(z-0.98)(z-0.96)}\right) \quad \text { real }=\text { cosine, imag }=- \text { sine } \\
& Y=-457.27+j 155.47 \\
& y_{2}(t)=-457.27 \cos (4 t)-155.47 \sin (4 t)
\end{aligned}
$$

The total answer is the sum of the two

$$
y(t)=1000-457.27 \cos (4 t)-155.47 \sin (4 t)
$$

Problem 3) Assume $G(s)$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{1000}{(s+3)(s+7)(s+20)}\right)
$$

3) Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
\begin{array}{ll}
s_{1}=-3 & z_{1}=e^{s T}=e^{(-3)(0.01)}=0.9704 \\
s_{2}=-7 & z_{2}=e^{-0.07}=0.9324 \\
s_{3}=-20 & z_{3}=e^{-0.2}=0.8187
\end{array}
$$

meaning

$$
G(z)=\left(\frac{k}{(z-0.9704)(z-0.9324)(z-0.8187)}\right)
$$

The DC gain of $G(s)$ is

$$
\left(\frac{1000}{(s+3)(s+7)(s+20)}\right)_{s=0}=2.3810
$$

Pick ' k ' so that $\mathrm{G}(\mathrm{z})$ has the same DC gain

$$
\begin{aligned}
& \left(\frac{k}{(z-0.9704)(z-0.9324)(z-0.8187)}\right)_{z=1}=2.3810 \\
& k=0.00086235
\end{aligned}
$$

so...

$$
G(z)=\left(\frac{0.00086235}{(z-0.9704)(z-0.9324)(z-0.8187)}\right)
$$

Plotting the gain vs. frequency

```
>> w = [0:0.01:10]';
>> s = j*w;
>> Gs = 1000./ ( (s+3).*(s+7).*(s+20) );
>> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.00086235 ./ ( (z-0.9704).*(z-0.9324).*(z-0.8187) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
```


$\mathrm{G}(\mathrm{s})$ (blue) and $\mathrm{G}(\mathrm{z})$ (red).

Problem 4) Assume $\mathrm{G}(\mathrm{s})$ is the following band-pass filter:

$$
G(s)=\left(\frac{6 s}{(s+3+j 20)(s+3-j 20)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

$$
\begin{array}{ll}
s_{1}=0 & z_{1}=e^{s T}=e^{0}=1 \\
s_{2}=-3+j 20 & z_{2}=e^{s T}=0.9511+j 0.1928 \\
s_{3}=-3-j 20 & z_{3}=e^{s T}=0.9511-j 0.1928
\end{array}
$$

So, $G(z)$ looks like

$$
G(z)=\left(\frac{k(z-1)}{(z-0.9511+j 0.1928)(z-0.9511-j 0.1928)}\right)
$$

To find ' k ', match the gain somewhere. DC doesn't work since the DC gain is zero. Pick some other frequency, such as $20 \mathrm{rad} / \mathrm{sec}$

$$
\left|\left(\frac{6 s}{(s+3+j 20)(s+3-j 20)}\right)_{s=j 20}\right|=0.9972
$$

Pick ' k ' so that the gain matches

$$
\begin{aligned}
& z=e^{s T}=e^{j 0.2} \\
& \left|\left(\frac{k(z-1)}{(z-0.9511+j 0.1928)(z-0.9511-j 0.1928)}\right)_{z=e^{j 0.2}}\right|=0.9972 \\
& k=0.05794
\end{aligned}
$$

meaning

$$
G(z)=\left(\frac{0.05794(z-1)}{(z-0.9511+j 0.1928)(z-0.9511-j 0.1928)}\right)
$$

or

$$
G(z)=\left(\frac{0.05794(z-1)}{z^{2}-1.902 z+0.9418}\right)
$$

Plotting the gain vs. frequency for the two:

```
>> w = [0:0.01:40]';
>> s = j*w;
>> Gs = 6*s./ ( (s+3+j*20).*(s+3-j*20) );
>>
>> T = 0.01;
>> z = exp(s*T);
>>Gz = 0.05794*(z-1) ./ ( z.^2 - 1.902*z + 0.9418);
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)')
>> ylabel('Gain');
```


$\mathrm{G}(\mathrm{s})$ (red) \& $\mathrm{G}(\mathrm{z})$ (blue)

Problem 5) Write a C program to implement the digital filter, $\mathrm{G}(\mathrm{z})$

$$
\begin{gathered}
0.05794(z-1) \\
\begin{array}{c}
\left(z^{\wedge} 2-1.902 z+0.9418\right) \\
Y
\end{array}=\left(\frac{0.05794(z-1)}{z^{2}-1.902 z+0.9418}\right) X
\end{gathered}
$$

Rewrite as

$$
\begin{aligned}
& \left(z^{2}-1.902 z+0.9418\right) Y=0.05794(z-1) X \\
& z^{2} Y=(1.902 z-0.9418) Y+0.05794(z-1) X \\
& \mathrm{y}(\mathrm{k}+2)=1.902 \mathrm{y}(\mathrm{k}+1)-0.9418 \mathrm{y}(\mathrm{k})+0.05794(\mathrm{x}(\mathrm{k}+1)-\mathrm{x}(\mathrm{k}))
\end{aligned}
$$

Shift time by 2 (change of variable)

$$
y(k)=1.902 y(k-1)-0.9418 y(k-2)+0.05794(x(k-1)-x(k-2))
$$

That's essentially the C program:

```
while(1) {
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0;
    y0 = 1.902*y1 - 0.9418*y2 + 0.05794*( x1 - x2 );
    D2A(y0);
    Wait_10ms();
    }
```

