ECE 376 - Final Exam: Name

Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.

1) Binary Outputs: Assume a 6411 NPN transistor (if needed)

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$
- $\beta=300$
- $\max (\mathrm{Ic})=6 \mathrm{~A}$

1a) Give a circuit which allows a PIC to turn on and off a 40 mW LED at 2 mA

- $\mathrm{Id}=20 \mathrm{~mA}$
- $\mathrm{Vd}=2.0 \mathrm{~V}$

$$
R=\left(\frac{5.0 \mathrm{~V}-2.0 \mathrm{~V}}{2 \mathrm{~mA}}\right)=1500 \Omega
$$

1b) Give a circuit which allows a PIC to turn on and off 12 V DC motor, which draws up to $3 \mathrm{~A} @ 12 \mathrm{~V}$

- $\mathrm{V}($ motor $)=12 \mathrm{~V}$
- Current draw < 3A

For a motor, you don't need (or want) to add a resistor: the motor limit the current by itself to $<3 \mathrm{~A}$.

Pick Rb to allow 3A to flow

$$
\begin{aligned}
& \beta I_{b}>3 A \\
& I_{b}>\left(\frac{3 A}{300}\right)=10 m A
\end{aligned}
$$

Let $\mathrm{Ib}=15 \mathrm{~mA}(\max$ a PIC can output is 25 mA$)$

$$
R_{b}=\left(\frac{5 V-0.7 V}{15 m A}\right)=286 \Omega
$$

Any current in the range of 10 mA .. 25 mA works
Any resistance in the range of 430 .. 172 Ohms works

2) Analog Inputs: A CdS light sensor has the following resistance - lux (light intensity) relationship

$$
R_{2}=1000 \cdot\left(\frac{10}{L u x}\right)^{0.6} \mathrm{Ohms}
$$

If the A / D reading is 417 , determine

- The voltage,
- The resistance,
- The light level in Lux, and
- The resolution (the smallest change in Lux you can detect)
with the following circuit. Assume

- $\mathrm{R}=900+100$ (your birth month) + (your birth date)

R $900+100^{*} m 0+$ day	A/D reading $0 . .1023$	Voltage $A / D=712$	R2 $A / D=712$	Lux $A / D=712$	Resolution smallest change in Lux you can measure
1,414	$\mathbf{7 1 2}$	3.480 V	3237.196 Ohms	7.0841 Lux	0.0216 Lux

$$
\begin{aligned}
& V=\left(\frac{712}{1023}\right) 5 V=3.480 V \\
& R_{2}=\left(\frac{V}{5-V}\right) 1414=3237.196 \Omega \\
& L u x=7.0841
\end{aligned}
$$

If the $\mathrm{A} / \mathrm{D}=713$ (smallest change you can measure)

$$
\begin{aligned}
& V=\left(\frac{713}{1023}\right) 5 V=3.4848 V \\
& R_{2}=\left(\frac{V}{5-V}\right) 11414=3252.2 \Omega \\
& L u x=7.1942
\end{aligned}
$$

The differenice is the resolution

$$
\delta L u x=0.0216
$$

3) C-Coding without interrupts: Write a C program for driving Christmas tree lights. Assume each output pin is connected to an LED. When pin RE0 goes high, the LEDs are to be turned on one at a time in the following sequence

- RA0-RB0-RC0-RD0 - repeat ten times
with a 250 ms delay between each light. Write the corresponding C code

```
void main(void) {
    ADCON1 = 0x0F;
    TRISE = 0xFF;
    TRISA = 0;
    TRISB = 0;
    TRISC = 0;
    TRISD = 0;
    while(1) {
        while(!REO);
        for(i=0; i<10; i++) {
            RAO = 1;
        Wait_ms(250);
        RAO = 0;
        RBO = 1;
        Wait_ms(250);
        RBVO = 0;
        RCO = 1;
        Wait_ms(250);
        RCO = 0;
        RDO = 1;
        Wait_ms(250);
        RDO = 0;
        }
        }
```


4) C Coding without interrupts: Christmas Present: Write a C program that turns on lights if the PIC is shaken back and forth in less than 100 ms .

- RA0: 5V if the PIC board experiences positive acceleration
- RA1: 5 V if the PIC board experiences negative acceneration
- PORTB: Connected to eight LEDs


```
void main(void) {
    unsigned int TIME;
    ADCON1 = 0x0F;
    TRISA = 0xFF;
    TRISB = 0;
    while(1) {
        if(TIME) TIME = TIME - 1; // decrement lo0ms timer to zero, stop at zero
        if(TIME == 0) { // start a lo0ms timer when RA0 goes high
                if(RAO) TIME = 100;
                }
        if(TIME > 0) {
                if(RA1) { // if - shake within l00ms or a + shake
                PORTB = 0xFF; // turn on PORTB for 1000ms
                Wait_ms(1000);
                PORTB = 0;
                TIME = 0;
                }
                }
            Wait_ms(1); // set the loop time to 1ms
        }
    }
```

5) C-Coding with interrupts: Write a C which uses interrupts to turn on the lighs for a Christmas tree:

- When pin RB0 goes high (INT0 interrupt)
- Pins RA0, RA1, RA2, then RA3 go high sequentially
- Each pin goes high for 100 ms (controlled by
 Timer0 interrupt)
- Once RA3 turns off, the process stops until the next INT0 interrupt

INT0 initialization rising or falling edge	Timer0 Initialization Pre-scalar = ?
rising	$\mathrm{PS}=256$
INT0 Interrupt Service Routine start the light show when RB0 goes high	Timer0 Interrupt Service Routine Trigger every 100 ms Turn on RA0 then RA1 then RA2 then RA3 three times then stop (until next INTO iinterrupt)
```if(INTOIF) { // reset the counter N = 0;```	```if(TMR0IF) { // every 100ms TMR0 = -3906;```
$\begin{aligned} & \text { // turn on RA0 } \\ & \text { PORTA = } 1 ; \end{aligned}$	// count up to five, stop at 5 if ( $\mathrm{N}<5$ ) $\mathrm{N}=\mathrm{N}+1$;
$\begin{aligned} & / / \text { for } 100 \mathrm{~ms} \\ & \text { TMR0 }=-3906 ; \end{aligned}$	// at 100 ms , set RA1   if ( $\mathrm{N}==1$ ) PORTA = 2;
$\begin{aligned} & \text { INTOIF }=0 ; ~ \\ & \} \end{aligned}$	// at 200 ms , set RA2   if ( $\mathrm{N}==2$ ) PORTA = 4;
On a rising edge of $R B O$, reset a counter (N) to zero, set up a TimerO interrupt in 100 ms , and set RAO	```// at 300ms, set RA3 if(N == 3) PORTA = 8; // past 300ms, turn off all lights if(N > 3) PORTA = 0; TMROIF = 0; }```   Every 100 ms , increment a counter and turn on the next light. After four interrupts, turn off PORTA

6) C-Coding with interrupts. Write a C program which uses interrupts to detect if a Christmas present is being shaken.

- If RB0 goes high three times in less than 500 ms
- PORTC goes high ( 0 xFF ) for one second


INT0   rising / falling edge	Timer2   N for 1ms	Timer2   A	Timer2   B	Timer2   C
rising	10,000	10	250	4


Main Loop   if needed	INT0 Interrupt   Count edges   On 1st edge, start 500ms counter If 3 edges in $<500 \mathrm{~ms}$, turn on PORTC for 1 sec	Timer2 every 1 ms
while(1)	```if(INTOIF) { // if first shake, start 500ms timer if(TIME == 0) { N = 1; TIME = 500; } // if 2+ shakes, count else { N = N + 1; } // if 3rd shake, turn on lighs if(N == 3) { PORTC = 0xFF; TIME2 = 1000; } INTOIF = 0;```	```if(TMR2IF) { //decrement 500ms counter to zero if(TIME) TIME -= 1; //decrement 1000ms counter to zero if(TIME2) TIME2 -= 1; //turn off lights after 1000ms else PORTC = 0; TMR2IF = 0; } every lms, decrement each timer to zero, stop at zero. Once the 1000ms timer goes to zero (TIME2), clear PORTC```

