ECE 376 - Final Exam: Name

Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.

1) Binary Outputs: Assume a 6411 NPN transistor (if needed)

- Vbe = 0.7V
- Vce(sat) = 0.2V
- $\beta = 300$
- max(Ic) = 6A

1a) Give a circuit which allows a PIC to turn on and off a 40mW LED at 2mA

• Id = 20mA

1b) Give a circuit which allows a PIC to turn on and off 12V DC motor, which draws up to 3A @ 12V

- V(motor) = 12V
- Current draw < 3A

For a motor, you don't need (or want) to add a resistor: the motor limit the current by itself to <3A.

Pick Rb to allow 3A to flow

$$\beta I_b > 3A$$
$$I_b > \left(\frac{3A}{300}\right) = 10mA$$

Let Ib = 15mA (max a PIC can output is 25mA)

$$R_b = \left(\frac{5V - 0.7V}{15mA}\right) = 286\Omega$$

Any current in the range of 10mA .. 25mA works

Any resistance in the range of 430 .. 172 Ohms works

2) Analog Inputs: A CdS light sensor has the following resistance - lux (light intensity) relationship

$$R_2 = 1000 \cdot \left(\frac{10}{Lux}\right)^{0.6}$$
 Ohms

If the A/D reading is 417, determine

- The voltage,
- The resistance,
- The light level in Lux, and
- The resolution (the smallest change in Lux you can detect)

with the following circuit. Assume

• $R = 900 + 100^{*}$ (your birth month) + (your birth date)

R 900 + 100*mo + day	A/D reading 01023	Voltage A/D = 712	R2 A/D = 712	Lux A/D = 712	Resolution smallest change in Lux you can measure
1,414	712	3.480 V	3237.196 Ohms	7.0841 Lux	0.0216 Lux

$$V = \left(\frac{712}{1023}\right) 5V = 3.480V$$
$$R_2 = \left(\frac{V}{5-V}\right) 1414 = 3237.196\Omega$$

$$Lux = 7.0841$$

If the A/D = 713 (smallest change you can measure)

$$V = \left(\frac{713}{1023}\right) 5V = 3.4848V$$
$$R_2 = \left(\frac{V}{5-V}\right) 11414 = 3252.2\Omega$$

$$Lux = 7.1942$$

The differencie is the resolution

$$\delta Lux = 0.0216$$

3) C-Coding **without** interrupts: Write a C program for driving Christmas tree lights. Assume each output pin is connected to an LED. When pin RE0 goes high, the LEDs are to be turned on one at a time in the following sequence

• RA0 - RB0 - RC0 - RD0 - repeat ten times

with a 250ms delay between each light. Write the corresponding C code

```
void main(void) {
   ADCON1 = 0 \times 0F;
   TRISE = 0xFF;
   TRISA = 0;
   TRISB = 0;
   TRISC = 0;
   TRISD = 0;
   while(1) {
      while(!RE0);
      for(i=0; i<10; i++) {</pre>
          RA0 = 1;
          Wait_ms(250);
          RA0 = 0;
          RB0 = 1;
          Wait_ms(250);
          RBV0 = 0;
          RC0 = 1;
          Wait_ms(250);
          RC0 = 0;
          RD0 = 1;
          Wait_ms(250);
          RD0 = 0;
          }
      }
```


4) C Coding without interrupts: Christmas Present: Write a C program that turns on lights if the PIC is shaken back and forth in less than 100ms.

- RA0: 5V if the PIC board experiences positive acceleration
- RA1: 5V if the PIC board experiences negative acceneration
- PORTB: Connected to eight LEDs

```
ball RA0
   RA0
                                                                         RA1
   input
                                                                       Q
                                                                                      ( \cap )
                                                                                      \widehat{}
    RA1
             < 100ms
    input
                                                                              shake
                                                                                      RA0:
                                                                      RA1:
    PORTB
                                                                                      positive
                                                                      negative
    output
                                                                      acceleration
                                                                                      acceleration
void main(void) {
   unsigned int TIME;
   ADCON1 = 0 \times 0F;
   TRISA = 0xFF;
   TRISB = 0;
   while(1) {
      if(TIME) TIME = TIME - 1; // decrement 100ms timer to zero, stop at zero
      if(TIME == 0) {
                                     // start a 100ms timer when RAO goes high
          if (RA0) TIME = 100;
          }
      if(TIME > 0) {
          if(RA1) {
                                     // if - shake within 100ms or a + shake
             PORTB = 0xFF;
                                     // turn on PORTB for 1000ms
             Wait_ms(1000);
             PORTB = 0;
             TIME = 0;
             }
          }
        Wait_ms(1);
                                     // set the loop time to 1ms
       }
   }
```

5) C-Coding **with** interrupts: Write a C which uses interrupts to turn on the lighs for a Christmas tree:

- When pin RB0 goes high (INT0 interrupt)
- Pins RA0, RA1, RA2, then RA3 go high sequentially
- Each pin goes high for 100ms (controlled by Timer0 interrupt)
- Once RA3 turns off, the process stops until the next INT0 interrupt

RB0 (input)			
RA0 (output) 100ms			
RA1 (output)	100ms		
RA2 (output)		100ms]
RA3 (output)			100ms

the next INTO interrupt			
INT0 initialization rising or falling edge	Timer0 Initialization Pre-scalar = ? PS = 256		
rising			
INTO Interrupt Service Routine start the light show when RB0 goes high	Timer0 Interrupt Service Routine Trigger every 100ms Turn on RA0 then RA1 then RA2 then RA3 three times then stop (until next INT0 iinterrupt)		
if(INTOIF) {	if(TMROIF) {		
// reset the counter $N = 0;$	// every 100ms TMR0 = -3906;		
<pre>// turn on RA0 PORTA = 1;</pre>	<pre>// count up to five, stop at 5 if(N < 5) N = N + 1;</pre>		
// for 100ms TMR0 = -3906;	<pre>// at 100ms, set RA1 if(N == 1) PORTA = 2;</pre>		
<pre>INTOIF = 0; }</pre>	<pre>// at 200ms, set RA2 if(N == 2) PORTA = 4;</pre>		
On a rising edge of RBO, reset a counter (N) to zero, set up a TimerO interrupt in 100ms, and set RAO	<pre>// at 300ms, set RA3 if(N == 3) PORTA = 8;</pre>		
	<pre>// past 300ms, turn off all lights if(N > 3) PORTA = 0;</pre>		
	<pre>TMROIF = 0; }</pre>		
	Every 100ms, increment a counter and turn on the next light. After four interrupts, turn off PORTA		

6) C-Coding with interrupts. Write a C program which uses interrupts to detect if a Christmas present is being shaken.

- If RB0 goes high three times in less than 500ms
- PORTC goes high (0xFF) for one second

INT0	Timer2	Timer2	Timer2	Timer2
rising / falling edge	N for 1ms	A	B	C
rising	10,000	10	250	4

Main Loop if needed	INTO Interrupt Count edges On 1st edge, start 500ms counter If 3 edges in < 500ms, turn on PORTC for 1sec	Timer2 every 1ms
while(1) {	if(INTOIF) {	if(TMR2IF) {
	<pre>// if first shake, start 500ms timer if(TIME == 0) { N = 1.</pre>	<pre>//decrement 500ms counter to zero if(TIME) TIME -= 1;</pre>
	TIME = 500; }	<pre>//decrement 1000ms counter to zero if(TIME2) TIME2 -= 1;</pre>
	<pre>// if 2+ shakes, count else { N = N + 1.</pre>	<pre>//turn off lights after 1000ms else PORTC = 0;</pre>
	}	TMR2IF = 0;
	<pre>// if 3rd shake, turn on lighs if(N == 3) { PORTC = 0xFF; TIME2 = 1000;</pre>	every 1ms, decrement each timer to zero, stop at zero.
	} INTOIF = 0; }	Once the 1000ms timer goes to zero (TIME2), clear PORTC
	On a rising edge on RBO (INTOIF) if the timer is zero, start a 500ms timer and set a counter (N) to one.	
	Else, increment the counter each rising edge.	
	If you detect a 3rd rising edge in 500ms, start a 1000ms timer to turn on PORTC	