ECE 376 - Homework \#4

C Programming and LCD Displays. Due Monday, September 26th

1) Determine how many clocks the following C code takes to execute

- Compile and download the code (modify working code and replace the main loop)
- Measure the frequency you see on RC0 (toggles every loop).
- Use an osiclloscope - or -
- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app like Piano Tuner
- RC 1 is $1 / 2$ the frequency of $\mathrm{RC} 0, \mathrm{RC} 2$ is $1 / 4$ th, $\mathrm{RC} 3=1 / 8$ th, etc
- The number of clocks it takes to execute each loop is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

1a) Counting mod 128

```
unsigned char i
while(1) {
    i = (i + 1) % 128;
    if(i == 0) PORTC += 1;
    }
```

1b) Counting mod 127

```
unsigned char i
while(1) {
    i = (i + 1)% 127;
    if(i == 0) PORTC += 1;
    }
```

1c) Long Integer Addition

```
unsigned long int A, B, C;
unsigned char i;
A = 0x12345678;
B = 0;
while(1) {
    i = (i + 1)% 128;
    if (i == 0) PORTC += 1;
    B = B + A;
    }
```

1d) Floating point division

```
float A, B, C;
A = 3.14159265379;
B = 2.718281828;
while(1) {
    i = (i + 1)% 128;
    if(i == 0) PORTC += 1;
    C = A / B;
    }
```


\$65 Voting Machine

2) Write a C program which turns your PIC into a voting machine capable of counting up to 65,535 votes per candidate (16-bit numbers):

- The LCD display shows the vote total for 4 candidates: A, B, C, \& D
- When RB3 is pressed and released, A increments by 1 (vote for A)
- When RB2 is pressed and released, B increments by 1 (vote for B)
- When RB1 is pressed and released, C increments by 1 (vote for C)
- When RB0 is pressed and released, D increments by 1 (vote for D)
- When RB7 is pressed, all votes are cleared $(A=B=C=D=0)$

3) How many lines of assembler does your code compile into?
4) Collect data to verify your voting machine works (each press results in one vote for the correct candidate)

\$65 Banjo - 20 Sided Die - Roulette Wheel - Other

Design an embedded system which uses the LCD display and C programming. Some suggestions are

- PIC Banjo. Play notes (G4, C3, G3, B4, D4) when you press buttons RB0..RB4. Display the note you're playing on the LCD display.
- 20-Sided Die: Roll a d20 every time you press RB0 with the roll displayed on the LCD display. When you roll a 20 , play 220 Hz on RC0 for $1 / 2$ second.
- Roulette Wheel: Roll an 8 -sided die when you press RB0. Have a light on PORTC shift left $32+\mathrm{N}$ times at a speed of $100 \mathrm{~ms} /$ step when you press the button. Beep at 220 Hz for $1 / 10$ second each step on RA1. Display the winning number on the LCD display.
- Door Lock: Unlock a door (PORTA turns on for 1 second) when you input the correct key: RB0 RB1 - RB2 - RB3.
- Other

5) Requirements: Specify the inputs / outputs / how they relate.
6) C code, flow chart, and resulting number of lines of assembler
7) Validation: Collect data in lab to verify you met the requirements.
8) Demo
