ECE 376 - Test \#1: Name

1) Digital Inputs. Design a circuit which outputs

- 0 V when $\mathrm{R}>800 \mathrm{Ohms}$
- 5 V when $\mathrm{R}<700$ Ohms

Assume

- $\mathrm{R} 1=900+100^{*}$ (your birth month) + (your birth date).
- May 14th, for example, gives R1 = 1414 Ohms
$\mathrm{R}=800$ Ohms $(\mathrm{Y}=0 \mathrm{~V})$

$$
V_{1}=\left(\frac{800}{800+1414}\right) 5 V=1.8067 V
$$

$\mathrm{R}=700 \mathrm{Ohms}(\mathrm{Y}=5 \mathrm{~V})$

$$
V_{1}=\left(\frac{700}{700+1414}\right) 5 V=1.6556 \mathrm{~V}
$$

Output goes up as the input goes down. Connect to the minus input Output goes high when V1 $=1.6556 \mathrm{~V}$. Make the offset 1.6556 V

Gain needed is

$$
\operatorname{gain}=\left(\frac{5 V-0 V}{1.8067 V-1.6556 V}\right)=33.10
$$

2) Digital Outputs: Design a circuit which allows your PIC to drive a 100W LED at N mA

- $\mathrm{N}=900+100^{*}$ (your birth month) + (your birth date)
- $\mathrm{N}=1414 \mathrm{~mA}$ for May 14th, for example

Assume a 100W LED has the following characteristics

- $\mathrm{Vf}=38 \mathrm{~V}$ @ 3000 mA
- 10,000 Lumens @ 3000mA

Assume a 6144 NPN transistor

- $\mathrm{Vbe}=700 \mathrm{mV}$
- Vce(sat) $=360 \mathrm{mV}$
- Current gain $=\beta=200$

mcd	Ic (mA) $900+100^{*}$ Month + Day	Rb	Rc
	$\mathbf{1 4 1 4} \mathbf{~ m A}$		

$$
\begin{aligned}
& m c d=\left(\frac{1414 \mathrm{~mA}}{3000 \mathrm{~mA}}\right) \cdot 10,000 \text { Lumen }=4713 \text { Lumen } \\
& R_{c}=\left(\frac{50 \mathrm{~V}-38 \mathrm{~V}-0.36 \mathrm{~V}}{1414 \mathrm{~mA}}\right)=8.232 \Omega \\
& I_{b}>\frac{I_{c}}{200}=7.07 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=10 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{10 m A}\right)=430 \Omega
$$

3) Assembler: Determine the contents of the W, PORTB, and PORTC registers after each operation. Assume

- PORTB and PORTC are output.
- Default is decimal

	W	PORTB	PORTC
Start:	Birth Month (1..12) 5	Birth Date (1..31) 14	15
addwf PORTC,F	5	14	20
subwf PORTB,W	9	14	20
decf PORTB,F	9	13	20
incf PORTC,W	21	13	20
btg PORTB, 0	21	12	20
iorlw 12	29	12	20
andlw 9	9	12	20
iorlw 7	15	12	20
negf PORTB,F	15	$-12=244$	20
comf PORTC,F	15	$-12=244$	$-21=235$

4) Assembler \& Timing:

a) Determine the number of clocks the following assembler subroutine takes to execute.

- Assume MONTH and DAY be your birth month and day.
b) Modify this routine (change A, B, and C) so that it takes $22,000,000$ clocks (2.2 seconds) to execute
- +/- 20,000 clocks

A	Month birth month 1.12	Day birth date $1 . .31$	N number of clocks Wait takes
200	5	14	$8 \mathrm{ABC}+8 \mathrm{AB}+8 \mathrm{~A}+6$ $\mathbf{N}=\mathbf{1 2 1 , 6 0 6}$
A	B	C	N
$\mathbf{4 3}$	$\mathbf{2 5 5}$	$\mathbf{2 5 0}$	$\mathbf{N}=\mathbf{2 2 , 0 1 8 , 0 7 0}$ $+/-20,000$

Wait:

movlw	200
movwf	CNT2

 nop
 nop
 W2:

movlw	MONTH	(B)	$8 * 200$
movwf	CNT1		
nop			
nop			

W1:

W0:

```
nop
nop 8 * 14 * 5 * 200
nop
nop
nop
decfsz CNT0,F
goto w0
decfsz CNT1,F
goto W1
```

 decfsz CNT2,F
 goto W2
 return
5) Assember \& Flow Charts. Write an assembler program to turn your PIC processor into a combination lock

- Press RB0 five times, then
- Press RB1 one time

Results in PORTD lights turning on for 2.2 seconds (door unlocked)
$\begin{array}{ll}\text { movlw } & 0 \times \mathrm{xFF} \\ \text { movwf } & \text { TRISB } \\ \text { clrf } & \text { TRISC } \\ & \\ & \\ \text { clrf } & \text { PORTC } \\ \text { clrf } & \text { PORTD }\end{array}$
L2:
movlw 0
cpfsgt PORTB
goto L3
goto L2
L3:
movlw 0
cpfseq PORTB
goto L4
goto L3
L4:
btfsc PORTB, 0
L5:
incf PORTC,F

L6:
btfss PORTB,1
goto L2
L7:
movlw 5
cpfseq PORTC
goto L1
L8:
movlw 255
movwf PORTD
call Wait
goto L1

Bonus: (Due Monday 2pm): Program and demonstrate problem \#5 on yor PIC board

Memory Read \& Write			
MOVWF	PORTA	memory write	w \rightarrow PORTA
MOVFF	PORTA PORTB	copy	PORTA \rightarrow PORTB
MOVF	PORTA, W	memory read	PORTA \rightarrow W
MOVLW	234	Move Literal to WREG	$123 \rightarrow \mathrm{~W}$
Memory Clear, Negation			
CLRF	PORTA	clear memory	0x00 \rightarrow PORTA
COMF	PORTA, W	toggle bits	!PORTA \rightarrow W (bit toggle)
NEGF	PORTA, W	negate	-PORTA \rightarrow W (2's compliment)
Addition \& Subtraction			
INCF	PORTA, F	increment	PORTA $+1 \rightarrow$ PORTA
ADDWF	PORTA, F	add	PORTA $+\mathrm{W} \rightarrow$ PORTA
ADDWFC	PORTA, W	add with carry	PORTA + W + carry \rightarrow W
ADDLW		Add Literal and WREG	
DECF	PORTA, F	decrement	PORTA $-1 \rightarrow$ PORTA
SUBFWB	PORTA, F	subtract with borrow	PORTA - W - c \rightarrow PORTA
SUBWF	PORTA, F	subtract no borrow	PORTA - W \rightarrow PORTA
SUBWFB	PORTA, F	subtract with borrow	PORTA - W - $\mathrm{C} \rightarrow$ PORTA
SUBLW	223	Subtract WREG from \#	$223-W \rightarrow W$
Shift left (*2), shift right (/2)			
RLCF	PORTA, F	rotate left through carry (9-bit rotate)	
RLNCF	PORTA, F	rotate left no carry	
RRCF	PORTA, F	rotate right through carry	
RRNCF	PORTA, F	rotate right no carry	
Bit Operations			
BCF PORTA, 3		Bit Clear f	clear bit 3 of PORTA
BSF PORTA, 4		Bit Set f	set bit 4 of PORTA
BTG PORTA, 2		Bit Toggle f	toggle bit 2 of PORTA
Logical Operations			
ANDWF	PORTA, F	logical and	PORTA $=$ PORTA and W
ANDLW	0×23	AND Literal with WREG	$\mathrm{W}=\mathrm{W}$ and 0x23
IORWF	PORTA, F	logical or	PORTA $=$ PORTA or W
IORLW	0x23	Inclusive OR Literal	W = W or 0×23
XORWF	PORTA, F	logical exclusive or	PORTA $=$ PORTA \times or W
XORLW	0x23	Exclusive OR Literal	W = W xor 0×23
Tests (skip the next instruction if...)			
CPFSEQ	PORTA	Compare PORTA to W , skip if PORTA $=\mathrm{W}$	
CPFSGT	PORTA	Compare PORTA to W, Skip if PORTA > W	
CPFSLT	PORTA	Compare PORTA to W, Skip if PORTA < W	
DECFSZ	PORTA, F	decrement, skip if zero	
DCFSNZ	PORTA, F	decrement, skip if not zero	
INCFSZ	PORTA, F	increment, skip if zero	
INFSNZ	PORTA, F	increment, skip if not zero	
BTFSC PORTA, 5		Bit Test f, Skip if Clear	
BTFSS PORTA, 1		Bit Test f, Skip if Set	
Flow Control			
GOTO Label		Go to Address 1st word	
CALL Label		Call Subroutine 1st word	
RETURN		Return from Subroutine	
RETLW	$\times 23$	Return with 0x23 in WREG	

