ECE 376-Test \#3: Name

Fall 2022. Open-Book, Open Note

1) Single Interrupt: Write a program for a back-up alarm using TImer2 interrupts.
a) Set up Timer2 to output a 716 Hz square wave on RC 0

N $\mathrm{f}=716 \mathrm{~Hz}$	A	B	C
6983.24	7	249	4

Write the main routine and interrupt servive routine which

- Plays 716 Hz on RC0
- For 50 toggles (25 cycles)
- Waits (pauses) for 1 second,
- Then repeats

Main Routine - main loop Play 716 Hz for 25 cycles every second Assume Timer2 has been initialized for 716 Hz	Timer2 Interrupt Routine Play 716 Hz for 25 cycles every second
```while(1) { N = 50; while(N); Wait_ms(1000); }```	```void Interrupt(void) { if(TMR2IF) { if(N) { N = N - 1; RCO = !RC0; } else RCO = 0; TMR2IF = 0; }```


2) Multiple Interrupts: Write a C program for a back-up alarm

Timer0 controls the output on RC0:

- RC0 is set for 250 ms then cleared for 750 ms , then repeats

Timer1 controls the output on RC1:

- RC 1 outputs 716 Hz whenever $\mathrm{RC} 0=1$

a) Specify the pre-scalar used for Timer0 and Timer1

Timer0 Pre-Scalar	Timer1 Pre-Scalar
$\mathbf{2 5 6}$	$\mathbf{1}$

Interrupt Service Routines

| Timer0 |
| :--- | :--- |
| Set RC0 for 250ms then Clear RC0 for 750ms \& repeat |$\quad$| Timer1 |
| :---: |
| Toggle RC1 at 716 Hz whenever RC0 $=1$ |

## 3) Timer1 Compare: Backup Alarm

Write the interrupt service routine for a back-up alarm.

- RC2 outputs a 250 ms pulse every 1000 ms (controlled by Timer 1 Compare 1 inerrupts)
- RC 1 outputs a 716 Hz square wave when $\mathrm{RC} 2=1$ (controlled by Timer1 Compare2 interrupts)


716 Hz
when RC2 $=1$
// Interrupt Initialization

Timer1   pre-scalar (1/2/4/8)	Compare1 (RC2)   Set RC2 / Clear RC2 / No Change	Compare 2 (RC1)   Set RC1 / Clear RC1 / No Change
$\mathbf{1}$	Set (once)   No change (249 times)   Clear (once)   No change (749 times)	set then clear   (alternate)

// Global Variables (if needed)
// Interrupts

4) Filter Analysis: Assume $X$ and $Y$ are related by the following transfer function

$$
Y=\left(\frac{0.02(z+1)}{(z-0.9)(z-0.7)}\right) X=\left(\frac{0.02 z+0.02}{z^{2}-1.6 z+0.63}\right) X
$$

a) What is the difference equation that relates X and Y ?

$$
y(k+2)-1.6 y(k+1)+0.63 y(k)=0.02(x(k+1)+x(k))
$$

b) Find $y(t)$ assuming

$$
x(t)=6+2 \cos (250 t)+5 \sin (250 t)
$$

Assume a sampling rate of T us where

- $\mathrm{T}=800+100$ (your birth month) + (your birth date) micro-seconds
- $T=1314 \mathrm{us}$
$x(t)=6$

$$
\mathrm{s}=0
$$

$$
\mathrm{z}=1
$$

$$
\begin{equation*}
Y=\left(\frac{0.02(z+1)}{(z-0.9)(z-0.7)}\right)_{z=1} . \tag{6}
\end{equation*}
$$

$Y=8.00$
$\mathrm{x}(\mathrm{t})=2 \cos (250 \mathrm{t})+5 \sin (250 \mathrm{t})$
$\mathrm{s}=\mathrm{j} 250$
$z=e^{s T}=1 \angle 18.82^{0}$
$X=2-j 5$
$Y=\left(\frac{0.02(z+1)}{(z-0.9)(z-0.7)}\right)_{z=1 \angle 18.82^{0}} \cdot(2-j 5)$
$Y=-1.5632+j 0.3666$
$y(t)=-1.5632 \cos (250 t)-0.3666 \sin (250 t)$
The total answer is DC + AC
$y(t)=8.000-1.5632 \cos (250 t)-0.3666 \sin (250 t)$

