ECE 376 - Homework \#3

Binary Outputs and Timing. Due Monday, September 12th

Binary Outputs

1) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off) and 20 mA (on). Assume the specifications for the LEDs are:

Color	Vf @ 20mA	mcd @ 20 mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

Since the PIC is driving a load that needs

- Less than 5 V and
- Less than 25 mA
a PIC can drive the load directly using only a resistor to limit the current:

$$
\begin{aligned}
& R_{r}=\left(\frac{5 V-2.0 V}{20 m A}\right)=150 \Omega \\
& R_{g}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega \\
& R_{b}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega
\end{aligned}
$$

2) Design a circuit which allows your PIC board to turn on and off a 5W LED. The specs for the LED are:

- $\mathrm{Vf}=6.0-7.0 \mathrm{~V}$
- Current $=700 \mathrm{~mA}$
- 500-600 Lumens (equivalent to a 60 W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823

In this case, you need a transistor since the current is more than a PIC can output. Assume a 6144 NPN transistor.

- $\beta=100$ worst case
- $V_{c e}(s a t)=0.2 \mathrm{~V}$

$$
\begin{aligned}
& R_{c}=\left(\frac{12 V-7 V}{700 \mathrm{~mA}}\right)=7.14 \Omega \\
& I_{b}>\frac{I_{c}}{\beta}=\frac{700 \mathrm{~mA}}{100}=7 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=10 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{10 m A}\right)=430 \Omega
$$

Timing:

3) Write a program which outputs the music note $\mathrm{E} 4(329.63 \mathrm{~Hz})$

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

The number of clocks per toggle (the timing for the wait loop) is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=15,168.52
$$

Come up with a wait loop that burns 15,168 clocks:

```
        N=10*A*B +5*A +9 = 15,168
    A=7,B=216 results in N=15,164(off by 0.03%)
#include <p18f4620.inc>
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
    org 0x800
    call Init
Loop:
        incf PORTC,F
        call Wait
        goto Loop
; --- Subroutines ---
Init:
    clrf TRISA
    clrf TRISB
    clrf TRISC
    clrf TRISD
    clrf TRISE
    movlw 0x0F
    movwf ADCON1 ;everyone is binary
    return
; Wait 15,168 clocks (actual wait = 15,164)
Wait:
    movlw 7 ; A
    movwf CNT1
W1:
        movlw 216 ; B
        movwf CNTO
W0:
            nop ; 10 clocks
            nop
            nop
            nop
            nop
            nop
            nop
                        decfsz CNTO, F
                goto WO
                decfsz CNT1, F
                goto W1
    return
```


Lab:

4) Requirements:

- Inputs: Buttons on RB0 / RB1 / RB2 / RB3
- Outputs: RC0
- Relationship: Output a square wave on RC0 based upon the button pressed:
- RB0: $185.00 \mathrm{~Hz}(\mathrm{~F} \# 3)$
- RB1: $207.65 \mathrm{~Hz}(\mathrm{G} \# 3)$
- RB2: $233.08 \mathrm{~Hz}(\mathrm{~A} \# 3)$
- RB3: $277.18 \mathrm{~Hz}(\mathrm{C} \# 4)$

5) Analysis, Code, and Flow Chart. Give computations for resistor values (if any), timing, assembler code, and a flow chart for your code

The number of clocks needed for each note are:

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

N is created using a series of loops:

$$
\mathrm{N}=10 \mathrm{AB}+5 \mathrm{~B}+5
$$

185 Hz :

- $\mathrm{N}=27,027.027$
- $\mathrm{A}=245, \mathrm{~B}=11$
207.65 Hz :
- $\mathrm{N}=24,078.979$
- $\mathrm{A}=240, \mathrm{~B}=10$
233.08 Hz
- $\mathrm{N}=21,451.86$
- $\mathrm{A}=238, \mathrm{~B}=9$
277.18 Hz
- $\mathrm{N}=18,038.819$
$\mathrm{A}=225, \mathrm{~B}=8$

```
; --- Piano4.asm ----
; When you press button RBO..RB3, you play a note
; on RC0:
; RB0: 185.00 Hz (F#3)
; RB1: 207.65 Hz (G#3)
; RB2: 233.08 Hz (A#3)
; RB3: 277.18 Hz (C#4)
#include <p18f4620.inc>
:
:
:
assembler code
:
:
```


6) Validation: Collect data in the lab to verify your code works.

- For a binary clock, is it counting once per second?
- For the dice, are the results random? Is the beep 220 Hz ? Is it 1 second?
- For the piano, is each note correct in frequency?

RB0: 185.00 Hz

RB2: 233.08 Hz

RB1: 207.65 Hz

RB3: 277.18 Hz
7) Demonstration: Demonstrate that your embedded system works (either in person or with a video)

