
ECE 376 - Homework #4
C Programming and LCD Displays. Due Monday, September 26th

Please make the subject "ECE 376 HW#4" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app

like Piano Tuner

- RC1 is 1/2 the frequency of RC0, RC2 is 1/4th, RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =



10,000,000

2⋅Hz




1a) Counting mod 128

unsigned char i
while(1) {
 i = (i + 1) % 128;
 if(i == 0) PORTC += 1;
 }

From Pano Tuner, f = 2445.2Hz

N =



10,000,000

2⋅Hz


 = 2044.82

PORTC counts every 128th count, so each

loop takes N/128

N/128 = 15.975

It takes about 16 locks to count mod 128

1b) Counting mod 127

unsigned char i
while(1) {
 i = (i + 1)% 127;
 if(i == 0) PORTC += 1;
 }

With this code, f = 75.6Hz

N =



10,000,000

2⋅Hz


 = 66, 137.566

N/127 = 520.76

It takes about 521 clocks to count mod 127

1c) Long Integer Addition

 unsigned long int A, B, C;
 unsigned char i;

A = 0x12345678;
B = 0;
while(1) {

 i = (i + 1)% 128;
 if (i == 0) PORTC += 1;
 B = B + A;
 }

 f = 795.2Hz

N =



10,000,000

2⋅Hz


 = 6287.72

N/128 = 49.12

N/128 − 16 = 33.12

It takes 16 clocks to count mod 128

It takes an additional 33 clocks to add a long integer

1d) Floating point division

float A, B, C;
A = 3.14159265379;
B = 2.718281828;
while(1) {

 i = (i + 1)% 8;
 if(i == 0) PORTC += 1;
 C = A / B;
 }

f = 323.6 Hz

N =



10,000,000

2∗Hz


 = 15, 451.17

N/8 = 1931.39

N/8 − 16 = 1915.39

It takes 1931 clocks per loop

It takes 16 clocks to count mod 8 (same as mod 128)

It takes an additional 1915 clocks to do a single floating point division

$65 Voting Machine

2) Write a C program which turns your PIC into a voting machine capable of counting up to 65,535

votes per candidate (16-bit numbers):

// Global Variables

const unsigned char MSG0[20] = "Voting Machine ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

// Main Routine

void main(void)
{
 unsigned int i;
 unsigned int A, B, C, D;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init(); // initialize the LCD

 A = 0;
 B = 0;
 C = 0;
 D = 0;

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 Wait_ms(70);

 while(1) {
 :

:
C Code
:
:

 }

3) How many lines of assembler does your code compile into?

 # instructions = 2782/2 = 1391 lines of assembler

Memory Summary:

 Program space used ADEh (2782) of 10000h bytes (4.2%)

 Data space used 2Dh (45) of F80h bytes (1.1%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

4) Collect data to verify your voting machine works (each press results in one vote for the correct

candidate)

Press D six times (D counts to six)

Press C two times (C counts to two)

Press B five times (B counts to five)

Press A ten times (A counts to ten)

$65 Banjo

5) Requirements: Specify the inputs / outputs / how they relate.

Inputs: Buttone RB0 .. RB3

Outputs: RC0

Relationship

Play the following notes when a button is pressed

RB0: C4 (261.63Hz)

RB1: G4 (392.00Hz)

RB2: B3 (246.94Hz)

RB3: D4 (293.66Hz)

Tolerance: +/- 1%

6) C code, flow chart, and resulting number of lines of assembler

To generate a note, the following test code was used

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 while(1) {
 if(RB0) {
 RC0 = !RC0;
 for(i=0; i<1000; i++);
 }
 }
 }

The results was a 312.2Hz square wave.

To output different freuqencies, change the count:

RB0: C4 (261.63Hz)

N =



312.2Hz

261.63Hz


 1000 = 1193

RB1: G4 (392.00Hz)

N =



312.2Hz

392.00Hz


 1000 = 796

RB2: B3 (246.94Hz)

N =



312.2Hz

246.94Hz


 1000 = 1264

RB3: D4 (293.66Hz)

N =



312.2Hz

293.66Hz


 1000 = 1063

Flow Chart

PORTB = Input

Start

PORTC = Output

no

yes

Button

Pressed?

Toggle RC0

Wait N counts

// --- Banjo.C -------------------

// Global Variables
unsigned char MSG0[16] = "Electronic Banjo";
unsigned char MSG1[16] = "C4 (261.63Hz) ";
unsigned char MSG2[16] = "G4 (392.00Hz) ";
unsigned char MSG3[16] = "B3 (246.94Hz) ";
unsigned char MSG4[16] = "D4 (293.66Hz) ";

// Subroutine Declarations
#include <pic18.h>
#include "LCD_PortD.c"

// Main Routine

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init();
 LCD_Move(0,0);
 for(i=0; i<16; i++) LCD_Write(MSG0[i]);

 while(1) {
:
:
C Code
:
:
}

 }

7) Validation: Collect data in lab to verify you met the requirements.

Refer to the requirements

Inputs: Button RB0 .. RB3

Yes, buttons RB0..RB3 are inputs (LED lights up when pressed)

Outputs: RC0

Yes - connecting a speaker to RC0 plays a note

Relationship

Play the following notes when a button is pressed

RB0: C4 (261.63Hz)

RB1: G4 (392.00Hz)

RB2: B3 (246.94Hz)

RB3: D4 (293.66Hz)

Tolerance: +/- 1%

Data:

Button RB0 RB1 RB2 RB3

Hz (desired) 261.63 392 246.94 293.66

Hz (actual) 261.6 391.3 247.0 293.4

% Error -0.01% -0.18% +0.02% -0.09%

Within tolerance? yes yes yes yes

8) Demo

