ECE 376 - Homework \#6

A/D Converters, Data Collection, Chi-squared Test, Student t-Test.
Due Monday, October 10th

Analog Inputs

1) Determine how long it takes to do an A/D conversion with a PIC processor
```
void main(void)
{
    TRISC = 0;
    ADCON1 = 0x0F;
// Turn on the A/D input
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x95;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    while(1) {
        A2D = A2D_Read(0);
        PORTC = PORTC + 1;
        }
    }
```

Result:

- RC5 outputs 478.8 Hz
- RC0 outputs 32 x that frequency $(15,321.6 \mathrm{~Hz})$

$$
\begin{aligned}
& N=\left(\frac{10,000,000}{2 \cdot H z}\right) \\
& N=326.33 \text { clocks }
\end{aligned}
$$

It takes about 326 clocks to do an A/D read (32.6us)

2) Assume the A / D reads 371 for the following circuit.

What is the voltage, Vx ?

$$
V_{x}=\left(\frac{371}{1023}\right) 5 \mathrm{~V}=1.8133 \mathrm{~V}
$$

What is the resitance, Rt?

$$
\begin{aligned}
& V_{x}=\left(\frac{R_{t}}{R_{t}+1000}\right) 5 V \\
& R_{t}=\left(\frac{V_{x}}{5-V_{x}}\right) \cdot 1000 \Omega \\
& R_{t}=569.02 \Omega
\end{aligned}
$$

What is the temperature?

$$
\begin{aligned}
& R_{t}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega=569.02 \Omega \\
& T=38.39^{0} C
\end{aligned}
$$

Analog Inputs

Electronic Watering System

3) Requirements: Specity

Input

- Analog Input RA0 (0..5V)
- Button RB0

Output

- LCD Display
- PORTC

Relationship

- Adjust the analog input from 0 to 1023
- Press RB0
- The lights on PORTC will turn on for N seconds where $\mathrm{N}=0.0$ to 102.3 seconds
- The time remaining is displayed on the LCD display
- When the time reaches 0.0 seconds, the lights on PORTC turn off and the program repeats

4) C-code and flow chart
```
< include C code >
```

Memory Summary:							
Program space used	976h	2422)	of	10000 h	bytes		3.7\%)
Data space used	27 h	39)	of	F80h	bytes		1.0\%)
EEPROM space used	Oh	$0)$	Of	400h	bytes		0.0\%)
ID Location used	Oh	$0)$	Of	8 h	nibbles		0.0\%)
Configuration used	Oh	$0)$		7 h	words		0.0\%)

5) Testing and Validation

- Collect data to shot you met the requirements

Analog input reads 000.0 to 102.3
RB0 starts the process

- PORTC turns on
- The timer decreases one count every 100 ms
- When the count gets to zero, it stops and PORTC turns off Using a stopwatch app
- 40.0 seconds takes 40.2 seconds (stopwatch app)
- 71.0 seconds takes 70.66 seconds

Chi-Squared Test

6) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RB0);
    while(RBO) DIE = (DIE + 1) % 6;
    DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

Result:

Roll	p	np	N	chi-squared
1	$1 / 6$	13.17	10	0.76
2	$1 / 6$	13.17	12	0.1
3	$1 / 6$	13.17	12	0.1
4	$1 / 6$	13.17	10	0.76
5	$1 / 6$	13.17	15	0.25
6	$1 / 6$	13.17	20	3.54
				Total
		$\mathbf{5 . 5 3}$		

From StatTrek. this corresponds to a probability of 0.64533
There is a $\mathbf{6 4 . 5 \%}$ chance that this is not a fair die

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.

7) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RB0);
    while(RB0) {
        DIE = (DIE + 1) % 6;
        X = (X + 1) % 101;
        }
    DIE = DIE + 1;
    if(X < 10) DIE = 6;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

Roll	p	np	N	chi-squared
1	$1 / 6$	16.5	20	0.74
2	$1 / 6$	16.5	15	0.14
3	$1 / 6$	16.5	22	1.83
4	$1 / 6$	16.5	7	5.47
5	$1 / 6$	16.5	12	1.23
6	$1 / 6$	16.5	23	2.56
	Total	11.97		

From StatTrek, this corresponds to a probability of 0.9648

There is a $\mathbf{9 6 . 4 8 \%}$ chance this is not a fair die

> - Enter value for degrees of freedom.
> - Enter a value for one, and only one, of the other textboxes.
> - Click Calculate to compute a value for the remaining textbox.

Chi-square critical value (x) $\quad 11.97$

Am I Psychic?

8) Determine whether or not you're psychic:

- Guess which number you're going to roll with the fair 6-sided die.
- Roll the dice a bunch of times and count how many times you're right ($\mathrm{N}>10$)

Use a chi-squared test to determine whether or not you're guessing (correct $1 / 6$ th of the time)
Code:
while(1) \{

$:$	
$:$	
C Code	
$:$	
$:$	
$\}$	

Result:

- Correct: 14 times
- Incorrect: 27 times

Result	p	np	N	chi-squared
Correct	$1 / 6$	6.83	14	7.52
Incorrect	$5 / 6$	34.16	27	1.5
				Total
			$\mathbf{9 . 0 2}$	

From a Chi-Squred table (StatTrek was down), a chi-squared score of 9.02 with 1 d.o.f. corresponds to a probability >0.995

I'm 99.5\% certain that I'm not just guessing
be afraid....

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.

StatTrek: 99.733% chance of rejecting the null-hypothesis (99.733\% I'm not just guessing)

PIC Board: It keeps track of how many times my guess is right (wins) \& wrong (losses)

