ECE 376 - Homework \#8

Timer 2 Interrupts. Due Monday, October 31st

Measuring Time to $\mathbf{1 m s}$ with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 1 ms

- Time is measured to 1 ms using Timer2 interrupts
- Each interrupt, pin RC0 is toggled (outputting a 500 Hz square wave on RC0)
- Each interrupt (every 1 ms), TIME is decremented to zero, stopping at zero
- TIME is displayed on the LCD display to 1 ms : xx.xxx
- When you press RB0, the time is reset to 5.000 seconds
- When you press RB1, the time is reset to 10.000 seconds
- When you press RB2, the time is reset to 15.000 seconds
- When you press RB3, the time is reset to 20.000 seconds

Check the accuracy of your stopwatch

- Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter works)

Code:
:
:
:

Compilation Results

```
Memory Summary:
    Program space
    Data space
    EEPROM space
    ID Location space
    Configuration bits
```

used
used
used
used
$9 F C h$
$33 h$
$0 h$
$0 h$
$0 h$
0 $($

$2556)$	of	10000 h bytes
$51)$	of	F80h bytes
$0)$	of	400 h bytes
$0)$	of	8 h nibbles
$0)$	of	7 h words

$3.9 \%)$
$1.3 \%)$
$0.0 \%)$
$0.0 \%)$
$0.0 \%)$

Validation:

- Pressing RB0 initializes time to 5.000 seconds
- PRessing RB1 initialized time to 10.000 seconds
- (etc)
- Time decrements to 0.000 and stops
- Timer2 is called every 1.00 ms (checked with Pano Tuner)

500 Hz , which tells you that Timer2 is being called every 1.00 ms

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

- Play note E4 $(329.63 \mathrm{~Hz})$ on pin RC0 when button RB0 is pressed
- Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

Calculations:

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=15,168.5223
$$

Find $\mathrm{A}, \mathrm{B}, \mathrm{C}$ so that $\mathrm{N}=\mathrm{A} * \mathrm{~B} * \mathrm{C}$. One solution is

- $\mathrm{A}=15$
- $\mathrm{B}=252.8$ (round to 253)
- $\mathrm{C}=4$

T2CON is then 0×75

T2CON $=0 \times 75$											
7	6	5	4	3	2	1	0				
0	1	1	1	0	1	0	1				
	$\mathrm{~A}=15$								T 2 E	$\mathrm{C}=5$	

Memory Summary: Program space Data space EEPROM space ID Location space Configuration bits

Target $=329.63 \mathrm{~Hz}$

used	9BAh	2490)	Of	10000 h	bytes		3.8\%)
used	33h	51)	Of	F80h	bytes		1.3\%)
used	Oh	0)		400 h	bytes		0.0\%)
used		$0)$			nibbles		0.0\%)
used	Oh	$0)$			words		0.0\%)

$0)$ of
7 h words

Code:
// Global Variables
const unsigned char MSGO[21] = "Banjo
const unsigned char MSG1[21] $=$ " 329.63 Hz

Steppper Motor Roulette Wheel

3) Requirements: Explain what the inputs are / what the outputs are / and how they relate. Also explain how Timer2 interrupts will be used in your embedded system.

Input:

- RB0

Output:

- Stepper Motor (on PORTA)
- LCD Display (on PORTD)

Relationship:

- To start the game, press and release RB0.
- This generates a random number from $0 . .7$
- The stepper motor then turns 3 rotations plus $25^{*} \mathrm{~N}$ steps at a rate of $10 \mathrm{~ms} / \mathrm{step}$ (set by Timer2)
- The number (0..7) is also displayed on the LCD display as the stepper motor turns

Calculations:

$10 \mathrm{~ms} /$ step is too large for Timer2 directly. So, a counter is added so that the stepper motor turns every 10th interrupt

- Timer2: 1 ms
- $\mathrm{A}=10$
- $B=250$
- $\mathrm{C}=4$
- Toggle RD0 every interrupt (results in 500 Hz square wave on RD0)
- 10th interrupt $=10 \mathrm{~ms}$
- Step the motor every 10 ms

4) C-Code and flow chart.

```
< insert code >
Memory Summary:
    Program space
    Data space
    EEPROM space
    ID Location space
    Configuration bits
used
used
used
used
used
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1256h & 4694) & of & 10000 & bytes & & 7.2\%) \\
\hline 46h & 70) & \(\bigcirc f\) & F80h & bytes & & 1.8\%) \\
\hline & \(0)\) & of & 400 h & bytes & & 0.0\%) \\
\hline & \(0)\) & & 8h & nibbles & & 0.0\%) \\
\hline Oh & \(0)\) & & 7 h & words & & 0.0\%) \\
\hline
\end{tabular}
```

Note: With interrupts, you pretty much need to use separate flow charts for each interrupt

Validation of code:

- Pressing RB0 results in a random number (0..7)
- The stepper motor makes 2 rotations then stops at the winning number
- When passing by each number, the stepper motor beeps
- Pressing RB0 again results in a new winning number (0..7)

5) Data. Your raw data (at least two data points)

Timer2 Interrupt

- 499.0 Hz
- It's being called every 1 ms

Winning Numbers

- $1,6,3,0,1,5,0,3,7,5,6,0,5$

6) Statistical Analysis: Analyze your data to determine

- The 90% confidence interval, or
- Who in your group can jump the highest (with what probability level), or
- Something else (your pick - just use some statistics to anlayze your data)

With only 14 numbers, there isn't enough data to do a chi-squared test with 8 bins, so use two bins

bin	p	np	N	chi-squared
even	0.5	7	8	$1 / 7$
odd	0.5	7	6	$1 / 7$
		Total		$2 / 7$

From StatTrek, with 1 degree of freedom, this corresponds to a probability of 0.41
I am 41% certain this is not a fair die

Using a different grouping:

bin	p	np	N	chi-squared
$0 . .3$	0.5	7	7	$0 / 7$
$4 . .7$	0.5	7	7	$0 / 7$
		Total		
	$0 / 7$			

I am 0% certain this is not a fair die

Using yet another grouping:

bin	p	np	N	chi-squared
0 or 5	$2 / 8$	3.5	6	1.786
other	$6 / 8$	10.5	11	0.595
	Total			2.381

From a chi-squared table with 1 degree of freedom, this corresponds to a probability of 0.88
I am $\mathbf{8 8 \%}$ certain this is not a fair die
7) Demo (in person during Zoom office hours or in a video)

