ECE 376 - Homework #8

Timer 2 Interrupts. Due Monday, October 31st

Measuring Time to 1ms with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 1ms

- Time is measured to 1ms using Timer2 interrupts
- Each interrupt, pin RC0 is toggled (outputting a 500Hz square wave on RC0)
- Each interrupt (every 1ms), TIME is decremented to zero, stopping at zero
- TIME is displayed on the LCD display to 1ms: xx.xxx
- When you press RB0, the time is reset to 5.000 seconds
- When you press RB1, the time is reset to 10.000 seconds
- When you press RB2, the time is reset to 15.000 seconds
- When you press RB3, the time is reset to 20.000 seconds

Check the accuracy of your stopwatch

• Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter works)

Code:

: : :

Compilation Results

Memory Summary:									
Program space	used	9FCh	(2556)	of	10000h	bytes	(3.9%)
Data space	used	33h	(51)	of	F80h	bytes	(1.3%)
EEPROM space	used	0h	(0)	of	400h	bytes	(0.0%)
ID Location space	used	0h	(0)	of	8h	nibbles	(0.0%)
Configuration bits	used	Oh	(0)	of	7h	words	(0.0%)

Validation:

- Pressing RB0 initializes time to 5.000 seconds
- PRessing RB1 initialized time to 10.000 seconds
- (etc)
- Time decrements to 0.000 and stops
- Timer2 is called every 1.00ms (checked with Pano Tuner)

500Hz, which tells you that Timer2 is being called every 1.00ms

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

- Play note E4 (329.63Hz) on pin RC0 when button RB0 is pressed
- Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

Calculations:

$$N = \left(\frac{10,000,000}{2 \cdot Hz}\right) = 15,168.5223$$

Find A, B, C so that $N = A^*B^*C$. One solution is

- A = 15
- B = 252.8 (round to 253)
- C = 4

T2CON is then 0x75

Momorry Cummorry

	T2CON = 0x75									
7	6	5	4	3	2	1	0			
0	1	1	1	0	1	0	1			
	A = 15			T2E	C :	= 5				

Target = 329.63 Hz

ory Summary:									
Program space	used	9BAh	(2490)	of	10000h	bytes	(3.8%)
Data space	used	33h	(51)	of	F80h	bytes	(1.3%)
EEPROM space	used	Oh	(0)	of	400h	bytes	(0.0%)
ID Location space	used	Oh	(0)	of	8h	nibbles	(0.0%)
Configuration bits	used	Oh	(0)	of	7h	words	(0.0%)
	Data space EEPROM space ID Location space	Program spaceusedData spaceusedEEPROM spaceusedID Location spaceused	Program spaceused9BAhData spaceused33hEEPROM spaceused0hID Location spaceused0h	Program spaceused9BAh (Data spaceused33h (EEPROM spaceused0h (ID Location spaceused0h (Program spaceused9BAh (2490)Data spaceused33h (51)EEPROM spaceused0h (0)ID Location spaceused0h (0)	Program spaceused9BAh (2490) ofData spaceused33h (51) ofEEPROM spaceused0h (0) ofID Location spaceused0h (0) of	Program spaceused9BAh (2490) of 10000hData spaceused33h (51) ofF80hEEPROM spaceused0h (0) of400hID Location spaceused0h (0) of8h	Program spaceused9BAh (2490) of 10000h bytesData spaceused33h (51) ofF80h bytesEEPROM spaceused0h (0) of400h bytesID Location spaceused0h (0) of8h nibbles	Program spaceused9BAh (2490) of 10000h bytes (Data spaceused33h (51) ofF80h bytes (EEPROM spaceused0h (0) of400h bytes (ID Location spaceused0h (0) of8h nibbles (

Code:

```
// Global Variables
const unsigned char MSG0[21] = "Banjo";
const unsigned char MSG1[21] = "329.63 Hz";
```

Steppper Motor Roulette Wheel

3) Requirements: Explain what the inputs are / what the outputs are / and how they relate. Also explain how Timer2 interrupts will be used in your embedded system.

Input:

• RB0

Output:

- Stepper Motor (on PORTA)
- LCD Display (on PORTD)

Relationship:

- To start the game, press and release RB0.
- This generates a random number from 0..7
- The stepper motor then turns 3 rotations plus 25*N steps at a rate of 10ms/step (set by Timer2)
- The number (0..7) is also displayed on the LCD display as the stepper motor turns

Calculations:

10ms/step is too large for Timer2 directly. So, a counter is added so that the stepper motor turns every 10th interrupt

- Timer2: 1ms
 - A = 10
 - B = 250
 - C = 4
 - Toggle RD0 every interrupt (results in 500Hz square wave on RD0)
- 10th interrupt = 10ms
 - Step the motor every 10ms

4) C-Code and flow chart.

< insert code >									
Memory Summary:									
Program space	used	1256h	(4694)	of	10000h	bytes	(7.2%)
Data space	used	46h	(70)	of	F80h	bytes	(1.8%)
EEPROM space	used	0h	(0)	of	400h	bytes	(0.0%)
ID Location space	used	0h	(0)	of	8h	nibbles	(0.0%)
Configuration bits	used	Oh	(0)	of	7h	words	(0.0%)

Note: With interrupts, you pretty much need to use separate flow charts for each interrupt

Validation of code:

- Pressing RB0 results in a random number (0..7)
- The stepper motor makes 2 rotations then stops at the winning number
- When passing by each number, the stepper motor beeps
- Pressing RB0 again results in a new winning number (0..7)

5) Data. Your raw data (at least two data points)

Timer2 Interrupt

- 499.0Hz
- It's being called every 1ms

Winning Numbers

• 1, 6, 3, 0, 1, 5, 0, 3, 7, 5, 6, 0, 5

6) Statistical Analysis: Analyze your data to determine

- The 90% confidence interval, or
- Who in your group can jump the highest (with what probability level), or
- Something else (your pick just use some statistics to anlayze your data)

With only 14 numbers, there isn't enough data to do a chi-squared test with 8 bins, so use two bins

bin	р	np	chi-squared	
even	0.5	7	8	1/7
odd	0.5	7	6	1/7
		То	2/7	

From StatTrek, with 1 degree of freedom, this corresponds to a probability of 0.41

I am 41% certain this is not a fair die

Using a different grouping:

bin	р	np	chi-squared	
03	0.5	7	7	0/7
47	0.5	7	7	0/7
		То	0/7	

I am 0% certain this is not a fair die

Using yet another grouping:

bin	р	np	chi-squared	
0 or 5	2/8	3.5	6	1.786
other	6/8	10.5	11	0.595
		То	2.381	

From a chi-squared table with 1 degree of freedom, this corresponds to a probability of 0.88 I am 88% certain this is not a fair die

7) Demo (in person during Zoom office hours or in a video)

