ECE 376 - Homework \#11

z-Transforms and Digital Filters. Due Monday, November 21st

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{10(s+3)}{\left(s^{2}+2 s+25\right)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\left(s^{2}+2 s+25\right) Y=(10 s+30) X
$$

$s Y$ means the derivative of y

$$
y^{\prime \prime}+2 y^{\prime}+25 y=10 x^{\prime}+30 x
$$

or

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+25 y=10 \frac{d x}{d t}+30 x
$$

b) Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+4 \sin (5 t)
$$

Note that $\mathrm{x}(\mathrm{t})$ has been on for all time. This means use phasor analysis. Treat this as two problems:

- One at DC:
$x(t)=2$
- One at $5 \mathrm{rad} / \mathrm{sec}: \quad x(t)=4 \sin (5 \mathrm{t})$

$\mathrm{x}(\mathrm{t})=2$

$$
\begin{aligned}
& s=0 \\
& X=2
\end{aligned}
$$

$$
Y=\left(\frac{10(s+3)}{\left(s^{2}+2 s+25\right)}\right)_{s=0} \cdot(2)=2.4
$$

$$
x(t)=4 \sin (5 t)
$$

$$
s=j 5
$$

$$
X=0-j 4
$$

$$
Y=\left(\frac{10(s+3)}{\left(s^{2}+2 s+25\right)}\right)_{s=j 5} \cdot(0-j 4)=-12-j 20
$$

$$
y(t)=-12 \cos (5 t)+20 \sin (5 t)
$$

The total answer is the DC term plus the AC term

$$
y(t)=2.4-12 \cos (5 t)+20 \sin (5 t)
$$

2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.01(z+0.8)}{(z-0.95)(z-0.88)}\right) X
$$

a) What is the difference equation relating X and Y ?

Cross multiply

$$
\left(z^{2}-1.83 z+0.836\right) Y=0.01(z+0.8) X
$$

$z X$ means the next value of x, or $x(k+1)$

$$
y(k+2)-1.83 y(k+1)+0.836 y(k)=0.01(x(k+1)+0.8 x(k))
$$

b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=2+4 \sin (5 t)
$$

Use superposition
$\mathrm{x}(\mathrm{t})=2$:

$$
\begin{aligned}
& s=0 \\
& z=e^{s T}=1 \\
& X=2 \\
& Y=\left(\frac{0.01(z+0.8)}{(z-0.95)(z-0.88)}\right)_{z=1} \cdot(2)=6 \\
& y(t)=6 \\
& \mathrm{x}(\mathrm{t})=4 \sin (5 \mathrm{t}) \\
& s=j 5 \\
& z=e^{s T}=e^{j 0.05}=1 \angle 2.865^{0} \\
& X=0-j 4 \\
& Y=\left(\frac{0.01(z+0.8)}{(z-0.95)(z-0.88)}\right) \\
& Y=-7.3627-j 3.1334 \\
& Y=-(0-j 4) \\
& y(t)=-7.3627 \cos (5 t)+3.1334 \sin (5 t)
\end{aligned}
$$

The total answer is DC + AC

$$
y(t)=6-7.3627 \cos (5 t)+3.1334 \sin (5 t)
$$

Problem 3) Assume $G(s)$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{90}{(s+3)(s+7)(s+11)}\right)
$$

3) Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
Convert from the s-plane to the z-plane using

$$
\begin{array}{ll}
s=-3 & z=e^{s T}=e^{-0.03}=0.9704 \\
s=-7 & z=e^{s T}=e^{-0.07}=0.9324 \\
s=-11 & z=e^{s T}=e^{=-/ 0.11}=0.8958
\end{array}
$$

so

$$
G(z) \approx\left(\frac{k}{(z-0.9704)(z-0.9324)(z-0.8958)}\right)
$$

Pick k to match the DC gain

$$
\begin{aligned}
& G_{s}(s=0)=\left(\frac{90}{(s+3)(s+7)(s+11)}\right)_{s=0}=0.3896 \\
& G_{z}(z=1)=\left(\frac{k}{(z-0.9704)(z-0.9324)(z-0.8958)}\right)_{z=1}=0.3869 \\
& k=8.109 \cdot 10^{-5}
\end{aligned}
$$

Add two zeros at $\mathrm{z}=0$ to match the phase at $0.1 \mathrm{rad} / \mathrm{sec}$

$$
G(z)=\left(\frac{8.109 \cdot 10^{-5}}{(z-0.9704)(z-0.9324)(z-0.8958)}\right)
$$

In Matlab:

```
>> Ps = [-3, -7, -11]
Ps = }\begin{array}{llll}{-3}&{-7}&{-11}
>> T = 0.01;
>> Pz = exp(s*T)
Pz=0.9704 0.9324 0.8958
>> s = 0;
>> DC = 90 / ( (s+3)*(s+7)*(s+11) )
DC = 0.3896
>> z = 1;
>> k = DC * ( (z+0.9704)* (z+0.9324)*(z+0.8958) )
k = 8.1090e-005
>> s = j*0.1;
>> Gs = 90 / ( (s+3)*(s+7)*(s+11) )
Gs = 0.3887 - 0.0221i
>> z = exp(s*T);
>>Gz = k / ( (z+0.9704)*(z+0.9324)*(z+0.8958) )
Gz = 0.3887 - 0.0227i
```

To plot the gain vs. frequency

```
>> w = [0:0.01:50]';
>> s = j*w;
>> Gs = 90 ./ ( (s+3).*(s+7).*(s+11) );
>> z = exp(s*T);
>> Gz = 8.109e-5 ./ ( (z-0.9704) .* (z-0.9324) .* (z-0.8958) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


Problem 4) Assume $G(s)$ is the following band-pass filter:

$$
G(s)=\left(\frac{6 s}{(s+1+j 20)(s+1-j 20)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

```
>> Zs = 0;
>> Ps = [-1+j*20,-1-j*20];
>> T = 0.01;
>> Zz = exp(Zs*T)
Zz = 1
>>Pz= exp(Ps*T)
Pz=0.9703 + 0.1967i 0.9703-0.1967i
>> s = j*20;
>>Gs = 6*s / ( (s+1+j*20) * (s+1-j*20) )
Gs = 2.9981 + 0.0750i
>> z = exp(s*T);
>>Gz=(z-1) / ( (z-Pz(1)) * (z-Pz(2)) )
Gz=50.5959 - 3.8191i
>> k = abs(Gs) / abs(Gz)
k = 0.0591
>> poly(Pz)
ans = 1.0000 -1.9406 0.9802
```

meaning

$$
G(z)=0.0591\left(\frac{z-1}{z^{2}-1.9406 z+0.9802}\right)
$$

Plotting

```
>> w = [0:0.01:50]';
>> s = j*w;
>>Gs = 6*s./ ( (s+1+j*20).*(s+1-j*20) );
>> T = 0.01;
>> z = exp(s*T);
>>Gz = k*(z-1) ./ ( (z-Pz(1)).*(z-Pz(2)) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('Frequency (rad/sec)');
```

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

Gain of Gs(s) (red), Gain of Gz(z) (blue)

Problem 5) Write a C program to implement the digital filter, $\mathrm{G}(\mathrm{z})$

$$
\begin{aligned}
& Y=0.0591\left(\frac{z-1}{z^{2}-1.9406 z+0.9802}\right) X \\
& \left(z^{2}-1.9406 z+0.9802\right) Y=0.0591(z-1) X \\
& z^{2} Y=1.9406 z Y+0.9802 Y+0.0591(z-1) X \\
& \mathrm{y}(\mathrm{k}+2)=1.9406 \mathrm{y}(\mathrm{k}+1)+0.9802 \mathrm{y}(\mathrm{k})+0.0591 *(\mathrm{x}(\mathrm{k}+1)-\mathrm{x}(\mathrm{k}))
\end{aligned}
$$

Shift by two (change of variable)

$$
\mathrm{y}(\mathrm{k})=1.9406 \mathrm{y}(\mathrm{k}-1)+0.9802 \mathrm{y}(\mathrm{k}-2)+0.0591 *(\mathrm{x}(\mathrm{k}-1)-\mathrm{x}(\mathrm{k}-2))
$$

This is your C program

```
while(1) {
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0;
    y0 = 1.9406*y1 + 0.9802*y2 + 0.0591*(x1 - x2);
    D2A(y0);
    Wait_10ms();
    }
```

