ECE 376 - Homework \#4

C Programming and LCD Displays. Due Monday, September 25th Please submit as a hard copy, submit on BlackBoard, or email

1) Determine how many clocks the following C code takes to execute

- Compile and download the code (modify working code and replace the main loop)
- Measure the frequency you see on RC0 (toggles every loop).
- Use an osiclloscope - or -
- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app like Piano Tuner
- RC 1 is $1 / 2$ the frequency of $\mathrm{RC} 0, \mathrm{RC} 2$ is $1 / 4$ th, $\mathrm{RC} 3=1 / 8$ th, etc
- The number of clocks it takes to execute each loop is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

1a) Counting mod 16

```
unsigned char i
while(1) {
    i = (i + 1) % 16;
    if(i == 0) PORTC += 1;
    }
```

1b) Counting mod 17

```
unsigned char i
while(1) {
    i = (i + 1)% 17;
    if(i == 0) PORTC += 1;
    }
```

1c) Floating Point Division

```
float A, B, C;
A = sqrt(3);
B = sqrt(2);
while(1) {
    i = (i + 1)% 16;
    if(i == 0) PORTC += 1;
    C = A/B;
    }
```

1d) Double Precision Floating Point Division

```
double A, B, C;
A = sqrt(3);
B = sqrt(2);
while(1) {
    i = (i + 1)% 16;
    if(i == 0) PORTC += 1;
    C = A/B;
    }
```


Beep

2) Write a C program which plays 174.61 Hz (note F3) for 50 ms on a speaker
void Beep(void) \{
:
:
\}
3) Verify the frequency and duration of your note

\$65 Craps Table

4) Give a flow chart for a program which turns your PIC into a Craps Table:

- On reset, you start with $\$ 10$ in your bank (which is displayed on the LCD).
- The game starts by pressing a button RB0. The bet is $\$ 1$ (fixed).
- When you press and release RB0, it rolls two 6-sided dice
- hint: count mod 36. Die \#1 is count mod 36. Die \#2 is count/6.
- If you roll 7 or 11 , you win (bank increases by $\$ 1$)
- If you roll 2,3 , or 12 , you lose (bank decreases by $\$ 1$);
- If you roll a different number, that's your point. On RB0, you roll again.
- If you roll your point, you win
- If you roll 7 or 11 , you lose
- If you roll a different number, nothing happens.
- Keep playing until you win or lose
- On the LCD, display
- Your bank balance
- The two dice values (1..6 and 1..6), and
- The point (if you didn't roll a $2,3,7,11$, or 12 first roll)

5) Write the C code for a craps table
6) Verify your program

- On reset, you start with $\$ 10$ in your bank
- Numbers generated are random: two dice each in the range of $1 . .6$
- The LCD displays information correctly
- When you win, you gain $\$ 1$. When you lose, you lose $\$ 1$.

7) (20pt) Demonstration (in person or on a video)
