ECE 376 - Homework \#5

Keypads in C, Stepper Motors, NeoPixels in C. Due Monday, October 2nd Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Design an embedded system which uses the keypad and the NeoPixel. Some suggestions are...

- LED Flashlight: Input a number $0 . .255$ on the keypad. Drive the NeoPixel at that brightness level ($0 . .255$) as white light (RGB all the same).
- LED Color Flashlight: Input a number $0 . .255$ on the keypad. Set the brightness of RGB by pressing RB2 (R), RB1 (G), or RB2 (B).
- Starter Tree: Input a number on the keypad ($\mathrm{N}=0 . .100$). When * is pressed, each light on the NeoPixel turns on one at a time with a delay of $\mathrm{N}^{*} 100 \mathrm{~ms}$ per light.
- Other...

1) Requirements: Specify the inputs / outputs / how they relate.
2) C code, flow chart, and resulting number of lines of assembler
3) Validation: Collect data in lab to verify you met the requirements.
4) Demo. Video or in person.

Analog Inputs

5) Determine how long it takes to do an A/D conversion with a PIC processor
```
void main(void)
{
    TRISC = 0;
    ADCON1 = 0x0F;
// Turn on the A/D input
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x95;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    while(1) {
        A2D = A2D_Read(0);
        PORTC = PORTC + 1;
        }
    }
```

6) Assume the A / D reads 275 for the following circuit.

- What is the voltage, Vx?
- What is the resitance, Rt?
- What is the temperature?

Assume

$$
R_{t}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Design an embedded system which uses the A/D input and a stepper motor. Some suggestions are...

- Ohm-Meter: Measure resistance using a voltage-divider. Display the resistance on the LCD display and on a stepper motor where 200 steps $=2 \mathrm{k}$ Ohms (10 Ohms per step)
- Thermometer: Measure temperature using a voltage-divider and a thermistor. Display the temperature on the LCD display and on a stepper motor where 200 steps $=100 \mathrm{C}$ (0.5 C per step)
- Light Sensor: Measure light using a voltage-divider and a photoresistor. Display the light level in Lux on the LCD display and on a stepper motor where 200 steps $=1000$ Lux (5 Lux per step)
- Combination Lock:
- Input four numbers in the range of $0 . .20$
- Use the A/D input to adjust the number from $0 . .20$ and RB1 to register that number in the combination
- When RB0 is pressed, the last four numbers input are tested.
- If they are the correct combination, the door opens (stepper motor turns 180 degrees, waits 1 second, the returns to zero position).
- Other

7) Give the requirements and flow chart for your program
8) C code and resulting number of lines of assembler
9) Validation: Collect data in lab to verify you met the requirements.
10) Demo. Video or in person.
