ECE 376 - Homework \#6

Data Collection \& Chi-squared Test. Due Monday, February 27th
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Data Collection

1) Measure one of the following with at least two data sets and 20+ data points per run:

- The voltage across a capacitor as it discharges
- The temperature of a cup (or can) of hot water as it cools off
- The temperature of a can of cold water as it warms up
- Other

Plot the resulting data vs. time.
2) Come up with an exponential curve fit for your data in the form of

$$
V=a \cdot \exp (b t)
$$

or

$$
\ln (V)=b t+\ln (a)
$$

3) Use a chi-squared test to determine if your data has an exponential distribution

- Split the data into N bins (N different times)
- Count the number of data points in each bin
- Compare to the expected frequency using a chi-squared test)

Fair \& Loaded Dice

4) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RB0);
    while(RBO) DIE = (DIE + 1) % 6;
    DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

5) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RBO);
    while(RB0) {
        DIE = (DIE + 1) % 6;
        X = (X + 1) % 11;
        }
    DIE = DIE + 1;
    if(X == 0) DIE = 6;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```


Am I Psychic?

6) Write a C program which tests if you're psychic with a 3-sided die:

- Each round, predict which number is going to come up (0..2)
- Press the corresponding button RB0..RB2.
- When you release the button, a random number in the range of $0 . .2$ is generated
- If you were right, the PIC records that. Likewise if you were wrong.
- The LCD display displays how many times you were right and wrong.

7) Collect data with your program.
8) Determine the chance that you were not just guessing using a chi-squared test

- Null hypothesis: you are just guessing (correct 33% of the time).

