ECE 376 - Test \#2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

1) C Coding \& Flow Charts (25 points)

Write a C program to control a window for a green house. Assume

- Three buttons are connected to RB2:RB1:RB0
- A temperature sensor is connected to RA0, and
- A motor is connected to $\mathrm{RC} 1: \mathrm{RC} 0$
- RC1:RC0 $=1: 0=$ open
- RC1:RC0 $=0: 1=$ close

```
void main(void) {
    unsigned char Mode;
    unsigned int A2D;
    Init_A2D(); // A=analog, B/C/D = binary
    TRISB = 0xFF;
    TRISC = 0;
    Mode = 0;
    while(1) {
        if(RBO) Mode = 0;
        if(RB1) Mode = 1;
        if(RB2) Mode = 2;
        if(Mode == 0) PORTC = 1;
        if(Mode == 1) PORTC = 2;
        if(Mode == 2) {
        A2D = A2D_Read(0);
        if(A2D > 500) PORTC = 2;
        if(A2D < 400) PORTC = 1;
        }
    Wait_ms(100);
    }
    }
```


2) Subroutines: ($\mathbf{2 5}$ points)

Assume the relationship between the A / D reading and the actual temperature is as follows. Write a C subroutine which is

- Passes the raw A/D reading (0..1023),
- Returns the temperature in degrees C , and
- Takes into account the bend in the curve when the A/D reading is 400


```
float Problem2(unsigned int A2D) {
    unsigned char Temp;
    if(A2D < 400)
        Temp = 29 - 0.0125*A2D;
    else
        Temp = 0.04*(1000 - A2D);
    return(Temp);
    }
```


3) Analog Inputs (25 points)

Assume the A/D input to a PIC processor has the following hardware connection where R is a 3 k thermistor where T is the temperature in degrees C

$$
R=5000 \cdot \exp \left(\frac{3200}{T+273}-\frac{3200}{298}\right) \Omega
$$

Let T be your birth date (1..31) in degrees C

At this temperature, determine

- The resistance, R,
- The voltage, V0,
- The A/D reading, and

- The smallest change in termperature you can detect

T (degees C) birth date (1..31)	R Ohms	V0 Volts	A/D Reading $0 . .1023$	Smallest change in T you can detect
15	7259.37	$\mathbf{3 . 2 2 3 7 V}$	659	$\mathbf{0 . 1 1 0 6 C}$

at 15 C

$$
\begin{aligned}
& R=7259.3768 \Omega \\
& V_{0}=\left(\frac{R}{R+4000}\right) 5 V=3.2237 V \\
& A 2 D=\left(\frac{3.2237 V}{5.000 V}\right) 1023=659.56
\end{aligned}
$$

round up or round down (result wil be an integer)
If the A / D changes by one (smallest change you can see with using integers), V 0 changes by 4.88 mV

$$
\begin{aligned}
& d V=\left(\frac{1}{1023}\right) 5 V=0.004888 V \\
& V_{0}+d V=3.228590 V \\
& R=\left(\frac{V_{0}}{5-V_{0}}\right) 4000 \Omega=7290.4431 \Omega \\
& T=14.889355^{0} \mathrm{C} \\
& d T=-0.1106^{0} \mathrm{C}
\end{aligned}
$$

4) chi-squared test (10 points)

It's conjectured that numbers, such as stock prices, have a logarithmic distribution (it's more likely that a stock price is in the range of $10 . .19$ than $90 . .99$). To test this, the frequency of the first digit of 100 random stocks were recorded. Determine using a chi-square test if the data fits a log distribution.

1st Digit of Stock Price	p log distribution	np expected results: log pdf	N actual results	Chi-Squared
1	0.3155	31.55	27	$\mathbf{0 . 6 5 6 2}$
$2-3$	0.3155	31.55	45	$\mathbf{5 . 7 3 3 8}$
$4-5$	0.1845	18.45	12	$\mathbf{2 . 2 5 4 9}$
$6-7$	0.1309	13.09	10.16	15
$8-9$	0.1016		1	$\mathbf{0 . 2 7 8 7}$

Use a chi-squared table with 4 degrees of freedom. 17.28 corresponds to a probability of slightly less than 99.9%. Call it 99.8\%.

Based upon this data, there is a $\mathbf{9 9 . 8 \%}$ chance that numbers are not distributed logarithmically.

Chi-Squared Table
 Probability of rejecting the null hypothesis

dof	99.9%	99%	95%	90%	80%	60%	40%	20%	10%	5%	1%
1	10.81	6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
2	13.81	9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
3	16.25	11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
4	$\mathbf{1 8 . 4 6}$	13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
5	20.50	15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41
6	22.43	16.81	12.59	10.64	8.55	6.21	4.57	3.07	2.20	1.63	0.87
7	24.31	18.47	14.06	12.02	9.80	7.28	5.49	3.82	2.83	2.17	1.24

5) t-Tests (15 points)

The value of five 100 nF capacitors were recorded:

- Data $=\{104.0 \mathrm{nF}, 94.19 \mathrm{nF}, 104.1 \mathrm{nF}, 104.7 \mathrm{nF}, 105.2 \mathrm{nF}\}$
- mean $=102.439 \mathrm{nF}$
- st dev $=4.6362 \mathrm{nF}$
a) Use a student-t test to determine the probability that a random 100 nF capacitor has a value less than 90nF

Compute the t -score

$$
t=\left(\frac{102.439 n F-90 n F}{4.6362 n F}\right)=2.6830
$$

From a t-table with 4 dof, this corresponds to a probability of about 2.5%

There is about a $\mathbf{2 . 5 \%}$ chance that a random capacitor will be less than 90 nF

b) Use a student t-test to determine the 99% confidence interval for the value of a random capacitor.

Use the t-table with 4 dof to find 0.5% tails

$$
t=4.60
$$

The 99.9% confidence interval is then

$$
\begin{aligned}
& \bar{x}-4.60 s<C<\bar{x}+4.60 C \\
& 81.11 n F<C<123.76 n F
\end{aligned}
$$

Student t-Table area of tail												
dof $\backslash \mathrm{p}$	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005		
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62		
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6		
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92		
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61		
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87		
6	0.72	0.91	1.13	1.44	1.94	2.45	3.14	3.71	5.21	5.96		
7	0.71	0.90	1.12	1.41	1.89	2.36	3.00	3.50	4.78	5.41		
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29		

