ECE 376 - Final: Name

Calculators Permitted.

1) Binary Input: Schmitt Trigger. Design a circuit which outputs

- 0 V when $\mathrm{R}=4000$ Ohms, and
- 5 V when $\mathrm{R}=3500$ Ohms

At 4000 Ohms ($\mathrm{Y}=0 \mathrm{~V}$)

$$
V_{x}=\left(\frac{4000}{4000+1000}\right) 5 V=4.00 \mathrm{~V}
$$

At 3500 Ohms $(\mathrm{Y}=5 \mathrm{~V})$
$V_{x}=\left(\frac{3500}{3500+10000}\right) 5 V=3.889 \mathrm{~V}$
V(on) < V(off)
Connect to the minus nput
Offset $=3.889 \mathrm{~V}$
where the output goes high

$$
\text { gain }=\left(\frac{5 V-0 V}{4.00 V-3.889 V}\right)=45.00
$$

2) Analog Input: A light sensor has the following resistance vs. light relationship

$$
R=10,000 \cdot\left(\frac{1}{L u x}\right)^{0.6} \Omega
$$

2a) Determine the resistance, voltage, and A/D reading for the following circuit at 10 Lux and 1000 Lux

Lux	R	V	A/D
10	2511 Ohms	3.576 V	732
1000	158 Ohms	0.684 V	140

2b) Give a calibration function to compute the light level based upon the A / D reading

$$
L u x=a \cdot A / D+b
$$

Slope

$$
a=\left(\frac{10-1000}{732-140}\right)=-1.67
$$

Offset: Plug in a point
$L u x=a \cdot A / D+b$
$10=-1.67 \cdot 732+b$
$b=1234$
so

$$
L u x \approx-1.67 \cdot A / D+1234
$$

3) C Coding: A PIC is to be used to control the tail lights of a car.

- When RB2 is pressed, the lights on PORTA blink (left turn)
- When RB0 is pressed, the lights on PORTD blink (right turn)
- When RB1 is pressed, both lights turn on (brake)
- When braking (RB1), the lights stay on for 500 ms total. Otherwise, they're on for 100 ms (dim)

Write the corresponding C code

```
void main(void) {
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    ADCON1 = 0x0F; // no points off
    while(1) {
    if(RB2) {
        PORTA = !PORTA;
        PORTD = 0;
        }
    else if(RB1) {
        PORTA = 0xFF;
        PORTD = 0xFF;
        }
    else if(RBO) {
        PORTD = !PORTD;
        PORTA = 0;
        }
    else {
        PORTA = 0;
        PORTD = 0;
        }
    Wait_ms(100);
    if(!RB1) {
        PORTA = 0;
        PORTD = 0;
        }
    Wait_ms(400);
    }
```

4) C Subroutines Write subroutine which is passed two parameters and controls the tail lights of a car

- LEFT $=0:$ PORTA $=00000000$
- LEFT $=1:$ PORTA $=00001111$
- $\mathrm{LEFT}=2:$ PORTA = 11111111
- RIGHT $=0:$ PORTD $=00000000$
- RIGHT $=1:$ PORTD $=00001111$
- RIGHT = 2: PORTD = 11111111

```
void TailLights(unsigned char LEFT, unsigned char RIGHT)
{
if(LEFT == 0) PORTA = 0;
if(LEFT == 1) PORTA = 0x0F;
if(LEFT == 2) PORTA = 0xFF;
if(RIGHT == 0) PORTD = 0;
if(RIGHT == 1) PORTD = 0x0F;
if(RIGHT == 2) PORTD = 0xFF;
}
```

5) Interrupts: Write a program using interrupt to play a game of Hungry-Hungry Hippo where three players are playing with odds:

- Player A: Count every rising edge on RB0
- Player B: Count 90% of the rising edges on RB1
- Player C: Count 80% of the rising edges on RB2
a) Interrupt Set-Up

Specify which interrupt you're using and its initialization (pre-scalar, rising/falling edge, etc)

Interrupt	INT0	INT1	INT2	Timer0
Initialization	rising	rising	rising	PS=1

b) Interrupt Service Routines

Option \#1: Using a random number generator

- $X=0$.. 99 based upon the time of the interrupt
- Better: harder to detect that B and C are missing counts

INT0 Player A counts every edge	INT1 Player B counts 90% of edges	INT2 Player C counts 80% of edges	TMR0IF
if(INTOIF) \{ $\begin{aligned} & A=A+1 ; \\ & \text { INTOIF }=0 ; \\ & \} \end{aligned}$	$\begin{aligned} & \text { if (INT1IF) }\{ \\ & \mathrm{X}=\text { TMR0 } \% 100 ; \\ & \text { if }(\mathrm{X}>=10) \\ & \mathrm{B}=\mathrm{B}+1 ; \\ & \text { INT1IF }=0 ; \\ & \} \end{aligned}$	$\begin{aligned} & \text { if (INT2IF) }\{ \\ & \mathrm{X}=\mathrm{TMR0} \% 100 ; \\ & \text { if }(\mathrm{X}>=20) \\ & \mathrm{C}=\mathrm{C}+1 ; \\ & \text { INT2IF }=0 ; \\ & \} \end{aligned}$	$\begin{aligned} & \text { if (} \operatorname{TMROIF)~\{ } \\ & \quad \text { TMROIF }=0 ; \\ & \quad\} \end{aligned}$

Option \#2: Using a counter

- Deterministic: skip every 10th edge (INT1) or 5th edge (INT2)
$\left.\begin{array}{c|c|c|}\begin{array}{c}\text { INT0 } \\ \text { Player A counts every edge }\end{array} & \text { INT1 } & \text { INT2 } \\ \text { Player B counts } 90 \% \text { of edges }\end{array}\right)$

6) Interrupts: A PIC is to be used to control the tail lights of a car. Use one or more interrupts to control the brightness of PORTA (left turn signal) and PORTD (right turn signal) using two global variables, LEFT and RIGHT

- LEFT $=0$ to 100
- 0 to 100% duty cycle on PORTA
- RIGHT $=0$ to 100
- 0 to 100% duty cycle on PORTD

Option \#1: Using Timer0 called every 0.1 ms and a counter

Timer0 set up for $\mathrm{PS}=1$

```
void interrupt IntServe(void) {
    if(TMROIF) {
    TMR0 = -1000;
    N = (N + 1) % 100;
    if(LEFT < N) PORTA = 0xFF;
    else PORTA = 0;
    if(RIGHT < N) PORTD = 0xFF;
    else PORTD = 0;
    TMROIF = 0;
    }
```


Option \#2: Using Timer0, Timer1, \& Timer3

- Timer0 is called every 1 ms
- Timer0 turns on the lights if PWM >0
- Timer1 \& 3 turn off the lights $100 *$ X clocks in the future if PWM <100

```
void interrupt IntServe(void) {
    if(TMROIF) {
        TMR1 = -10000;
        if(LEFT) PORTA = 0xFF;
        if(RIGHT) PORTD = 0xFF;
        TMR1 = -LEFT*100;
        TMR3 = -RIGHT*100;
        TMR1IF = 0;
        }
    if(TMR1IF) {
        if(LEFT < 100) PORTA = 0;
        TMR1IF = 0;
        }
    if(TMR3IF) {
        if(RIGHT < 100) PORTD = 0;
        TMR3IF = 0;
        }
```

