ECE 376 - Final: Name

Calculators Permitted.

1) Binary Input: Schmitt Trigger. Design a circuit which outputs

- 0 V when $\mathrm{R}=4000$ Ohms, and
- 5 V when $\mathrm{R}=3500$ Ohms

2) Analog Input: A light sensor has the following resistance vs. light relationship

$$
R=10,000 \cdot\left(\frac{1}{L u x}\right)^{0.6} \Omega
$$

2a) Determine the resistance, voltage, and A/D reading for the following circuit at 10 Lux and 1000 Lux

Lux	R	V	A / D
10			
1000			

2b) Give a calibration function to compute the light level based upon the A / D reading

$$
L u x=a \cdot A / D+b
$$

3) C Coding: A PIC is to be used to control the tail lights of a car.

- When RB2 is pressed, the lights on PORTA blink (left turn)
- When RB0 is pressed, the lights on PORTD blink (right turn)
- When RB1 is pressed, both lights turn on (brake)
- When braking (RB1), the lights stay on for 500 ms total. Otherwise, they're on for 100 ms (dim)

Write the corresponding C code void main(void) \{.

4) C Subroutines Write subroutine which is passed two parameters and controls the tail lights of a car

- LEFT $=0:$ PORTA $=00000000$
- LEFT $=1:$ PORTA $=00001111$
- $\mathrm{LEFT}=2:$ PORTA $=11111111$
- RIGHT $=0:$ PORTD $=00000000$
- RIGHT $=1:$ PORTD $=00001111$
- RIGHT = 2: PORTD = 11111111

```
void TailLights(unsigned char LEFT, unsigned char RIGHT)
{
```

5) Interrupts: Write a program using interrupt to play a game of Hungry-Hungry Hippo where three players are playing with odds:

- Player A: Count every rising edge on RB0
- Player B: Count 90% of the rising edges on RB1
- Player C: Count 80% of the rising edges on RB2
a) Interrupt Set-Up

Specify which interrupt you're using and its initialization (pre-scalar, rising/falling edge, etc)

Interrupt	INT0	INT1	INT2	
Initialization				

b) Interrupt Service Routines

Specify the interrupt service routines

INT0 Player A counts every edge	INT1 Player B counts 90% of edges	INT2 Player C counts 80% of edges	
if(INTOIF)	if(INT1IF) \{	if(INT2IF) \{	

6) Interrupts: A PIC is to be used to control the tail lights of a car. Use one or more interrupts to control the brightness of PORTA (left turn signal) and PORTD (right turn signal) using two global variables, LEFT and RIGHT

- LEFT $=0$ to 100
- 0 to 100% duty cycle on PORTA
- RIGHT $=0$ to 100
- 0 to 100% duty cycle on PORTD
a) Specify which interrupts you are using and how each is set-up (pre-scalar, etc)

Interrupt \#1	Interrupt \#2 (optional)
Set-Up (PS, A/B/C)	Set-Up

b) Spefify the interrupt service routine(s) to control the brightness of PORTA and PORTD

Interrupt \#1 Code	Interrupt \#2 Code (optional)

