ECE 376 - Homework \#1

PIC Background. Due Monday, August 28th
Please submit as a hard copy, submit on BlackBoard, or email

Problem	Answer
1) How many clocks does it take to write the LCD display? - Check Homework \#9 solutions for Spring 2023	6.2543ms
2) A PIC's output is limited to 25 mA . Assuming V2 is 5 V , what is the smallest resistance youcan connect to the output? (how small can R3 be?)	200 Ohms
A PIC can measure voltage to 4.88 mV . To give an idea of how small this is....	
3) What is the smallest change in R2 a PIC can measure if R2 $=3300$ Ohms nominally? - How much does R2 have to change from 3300 Ohms for V1 to change by 4.88 mV ?	18.12 Ohms
4) Assume R2 is a thermistor. - What temperature is it if $\mathrm{R} 2=3300$ Ohms? - How much does the temperature have to change for V1 to change by 4.88 mV ?	$\begin{aligned} \mathrm{T} & =0.1161 \mathrm{C} \\ \mathrm{dT} & =0.0115 \mathrm{C} \end{aligned}$
A PIC can measure time to 100ns. To give an idea of how small this is....	
5) A peregrine falcon is the fastest animal in the world, able to reach $320 \mathrm{~km} / \mathrm{h}$. How far can a peregrine falcon fly in 100ns?	8.889um
6) Assume for the 555 timer - $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=3300, \mathrm{C}=0.1 \mathrm{uF}$ - What frequency does the 555 timer output on pin \#3?	1898.2829Hz
7) What is the smallest change in frequency a PIC can detect? - i.e. how much does the frequency have to change for the period to change by 100ns?	0.3602 Hz
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 $=3300$ Ohms (nominally). How much does R2 have to change for the period to change by 100 ns ? - i.e. What is the resolution of this circuit when used as an Ohm-meter?	0.7213 Ohms
9) Replace R2 with a thermistor which reads 3300 Ohms nominally. How much does the temperature have to change for the period to increase by 100 ns ? - i.e. what is the resolution in degrees C ?	0.004174 C

3) What is the smallest change in R 2 a PIC can measure if $\mathrm{R} 2=3300$ Ohms nominally?

- How much does R2 have to change from 3300 Ohms for V1 to change by 4.88 mV ?

The voltage at V1 is

$$
\begin{aligned}
& V_{1}=\left(\frac{R_{2}}{R_{2}+R_{1}}\right) 5 V \\
& V_{1}=\left(\frac{3300}{3300+1000}\right) 5 V=3.837209 \mathrm{~V}
\end{aligned}
$$

If V1 increases by 4.88 mV , then

$$
V_{1}+4.88 m V=3.842089
$$

Solving backwards for R2

$$
R_{2}=\left(\frac{V_{1}}{5-V_{1}}\right) R_{1}=3318.122296 \Omega
$$

meaning...

- R2 has to change by 18.122296 Ohms for V1 to change by 4.88 mV
- The PIC can read R2 with a resolution of 18.12 Ohms

4) Assume R2 is a thermistor.

$$
R_{2}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

What temperature is it if $\mathrm{R} 2=3300$ Ohms?

Solving for T

$$
3300 \Omega=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

backwards,

$$
\mathrm{T}=0.116089 \mathrm{C}
$$

How much does the temperature have to change for V1 to change by 4.88 mV ?

$$
(\text { R2 = 3318.12296 Ohms from problem \#3) }
$$

Solve for T

$$
3318.12296 \Omega=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

$$
\mathrm{T}=0.011517 \mathrm{C}
$$

The difference is 0.104572 C , meaning...

- Temperature has to change by 0.104 C for a PIC to detect the change
- The resolution is 0.104 C

5) A peregrine falcon is the fastest animal in the world, able to reach $320 \mathrm{~km} / \mathrm{h}$. How far can a peregrine falcon fly in 100 ns ?

$$
\begin{aligned}
& 320\left(\frac{\mathrm{~km}}{\mathrm{hr}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=88.889 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \left(88.889 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(100 \mathrm{~ns})=8.889 \mu \mathrm{~m}
\end{aligned}
$$

A peregrine falcon flies 8.889 microns in 100 ns .
6) Assume for the 555 timer

- $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=3300, \mathrm{C}=0.1 \mathrm{uF}$

What frequency does the 555 timer output on pin \#3?

The period is

$$
\begin{aligned}
& T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2) \\
& \mathrm{T}=526.8 \mathrm{us} \\
& \mathrm{f}=1 / \mathrm{T}=1898.2829 \mathrm{~Hz}
\end{aligned}
$$

Astable 555 Timer: Problems 5-8
The square wave at the Output has a period of $T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)$ seconds
7) What is the smallest change in frequency a PIC can detect?

- i.e. how much does the frequency have to change for the period to change by 100 ns ?

If the period is 100 ns longer

$$
\begin{aligned}
& T=5.26892 \mu s \\
& f=\frac{1}{T}=1897.922669 \mathrm{~Hz}
\end{aligned}
$$

The difference is

$$
\delta f=0.3602 \mathrm{~Hz}
$$

A change of frequency of 0.3602 Hz results in the period becoming 100ns longer
A PIC can detect a change of frequency of 0.3602 Hz
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.)

Assume R2 $=3300$ Ohms (nominally). How much does R2 have to change for the period to change by 100ns?

- i.e. What is the resolution of this circuit when used as an Ohm-meter?

The period is

$$
T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

The nominal period with $\mathrm{R} 1=1000, \mathrm{R} 2=3300, \mathrm{C}=0.1 \mathrm{uF}$ is

$$
\mathrm{T}=5.26792 \mathrm{us}
$$

If the period is 100 ns longer

$$
\mathrm{T}=5.26892 \mathrm{us}
$$

Solving for R 2 (keeping $\mathrm{R} 1=1000, \mathrm{C}=0.1 \mathrm{uF}$)

$$
\mathrm{R} 2=3300.7213 \mathrm{Ohm}
$$

Meaning

- R2 has to change by 0.7213 Ohms for the PIC to detect the change
- The PIC has a resolution of 0.7213 Ohms

9) Replace R2 with a thermistor which reads 3300 Ohms nominally. How much does the temperature have to change for the period to increase by 100 ns ?

- i.e. what is the resolution in degrees C ?

$$
R_{2}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

If R2 $=3300$ Ohms

$$
\mathrm{T}=0.116089183 \mathrm{C}
$$

If R2 $=3300.7213$ Ohms

$$
\mathrm{T}=0.111914591 \mathrm{C}
$$

The difference is the resolution

$$
\mathrm{dT}=0.004174 \mathrm{C}
$$

A PIC can detect a change of temperature of 0.004174 C

