ECE 376 - Homework #5

Keypads in C, Stepper Motors, NeoPixels in C. Due Monday, September 26th

NeoPixel Flashlight

1) Requirements: Specify the inputs / outputs / how they relate.

- Input a number from 0..255 using the keypad
- Press RB0
- The NeoPixel then lights up with a white light at that brightness level (0..255)

2) C code, flow chart, and resulting number of lines of assembler

Code: Main Loop

Compiler Results

Mem	ory Summary:									
	Program space	used	10E6h	(4326)	of	10000h	bytes	(6.6%)
	Data space	used	2Ch	(44)	of	F80h	bytes	(1.1%)
	EEPROM space	used	Oh	(0)	of	400h	bytes	(0.0%)
	ID Location space	used	Oh	(0)	of	8h	nibbles	(0.0%)
	Configuration bits	used	Oh	(0)	of	7h	words	(0.0%)

3) Validation: Collect data in lab to verify you met the requirements.

Requirement: Input a number from 000 to 255 using the keypad

- Input 000 (works)
- Input 255 (works)
- Input 123 (works)

Requirement: Press #. The NeoPixel goes to that brightness (255 = 100%)

Input Number	NeoPixels	Current (mA)	% Full Scale	% Full Scale		
			theory	measured		
0	off	7.1	0%	0.0%		
5	dim	12.0	1.9%	1.9%		
50		58.9	19.6%	20.48%		
100		110.0	39.2%	40.69%		
255	really bright	260	100%	100.0%		

4) Demo. Video or in person.

Analog Inputs

5) Determine how long it takes to do an A/D conversion with a PIC processor

```
void main(void)
{
   TRISC = 0;
   ADCON1 = 0x0F;

// Turn on the A/D input
   TRISA = 0xFF;
   TRISE = 0x0F;
   ADCON2 = 0x95;
   ADCON1 = 0x07;
   ADCON0 = 0x01;

   while(1) {
      A2D = A2D_Read(0);
      PORTC = PORTC + 1;
      }
   }
}
```

f = 15.35 kHz

$$N = \left(\frac{10,000,000}{2 \cdot Hz}\right) = 325.73$$

It takes about 32.57us to do an A/D read

(a little less if you take the time to count into account)

- 6) Assume the A/D reads 275 for the following circuit.
 - What is the voltage, Vx?
 - What is the resitance, Rt?
 - What is the temperature?

Assume

$$R_t = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right) \Omega$$

Vx is proportional to the A/D reading

$$V_x = \left(\frac{275}{1023}\right) 5.00V$$
$$V_x = 1.3441V$$

Rt comes from voltage division:

$$V_x = \left(\frac{R_t}{R_t + 1000}\right) 5V$$
$$R_t = \left(\frac{V_x}{5 - V_x}\right) 1000\Omega$$
$$R_t = 367.647\Omega$$

Tempeature comes from the thermistor equation

$$367.647\Omega = 1000 \cdot \exp\left(\frac{3905}{T+273} - \frac{3905}{298}\right)\Omega$$
$$T = 49.63C$$

Stepper Motor Angle Control

7) Requirements: Specify the inputs / outputs / how they relate.

Input:

• Analog Input: 0..255

Output:

• Stepper Motor

Relationship

- Input a number from 000 to 255 using the analog input
- The stepper motor then moves to that number of steps
- At a rate of 30ms / step, +/- 5ms

8) C code, flow chart, and resulting number of lines of assembler

Compilation Results

Memory Summary:

Program space	used	B1Ah	(2842)	of	10000h	bytes	(4.3%)
Data space	used	2Dh	(45)	of	F80h	bytes	(1.1%)
EEPROM space	used	0h	(0)	of	400h	bytes	(0.0%)
ID Location space	used	0h	(0)	of	8h	nibbles	(0.0%)
Configuration bits	used	0h	(0)	of	7h	words	(0.0%)

9) Validation: Collect data in lab to verify you met the requirements.

Requirement: Input numbers 000 to 255 with the analog input

- Knob all the way left: 000 (works)
- Knob all the way right (255) (works)
- Knob in the middle (126) (works)

Requirement: The motor goes to that angle

Input	Went To					
0	0					
50	50 steps (90 degrees)					
100	100 steps (180 degrees)					
200	200 steps (360 degrees)					

Requirement: At a rate of 30ms / step, +/- 5ms

- 255 steps took 7.47 seconds (using stopwatch)
- Time = 29.3ms / step
- 10) Demo. Video or in person.

