ECE 376 - Homework \#7

Data Collection \& Student t-Test. Due Monday, October 16th
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Data Collection (population A)

1) Measure one of the following with at least two data sets and 20+ data points per run:

- The voltage across a capacitor as it discharges
- The temperature of a cup (or can) of hot water as it cools off
- The temperature of a can of cold water as it warms up
- Other

Plot the resulting data vs. time.
The voltage of a 100uF capacitor discharging across a 100k resistor:

```
>> V1 = V1(50:1000);
>> V2 = V2(50:1000);
>> V3 = V3(50:1000);
>> t = [1:length(V1)]' * 0.01;
>> plot(t,V1,t,V2,t,V3)
>> xlabel('Time')
>> ylabel('Volts');
```


2) Determine the time constant from your data using least-squares

```
        V=a\mp@subsup{e}{}{-bt}}\quadT=a\mp@subsup{e}{}{-bt}+\mp@subsup{T}{amb}{
        ln}(V)=\operatorname{ln}(a)-bt\quad\operatorname{ln}(T-\mp@subsup{T}{amb}{})=\operatorname{ln}(a)-b
>> B = [t, t.^0];
>> A1 = inv(B'*B)* B'*log(V1)
    -0.2267
    1.5447
>> A2 = inv(B'*B)* B'* log(V2)
    -0.2297
    1.5253
>> A3 = inv(B'*B)**'*log(V3)
    -0.2310
    1.5652
>> Data = [A1 (1),A2(1),A3(1)]
Data = -0.2267 -0.2297 -0.2310
>> uFa = -[10/A1(1), 10/A2(1), 10/A3(1)]
uFa = 44.1198 43.5405 43.2923
```

uF is the corresponding value of C assuming

- $\mathrm{R}=100 \mathrm{k}$
- $\mathrm{t}=10 \mathrm{~ms}$ sampling rate
note: Probably t is wrong, which is why my 100uF capacitor is measuring at $43 u F$

3) Use a student t-test to determine the 90% confidnence interval for your time constant (b).
```
>> Xa = mean(uFa)
Xa = 43.6509
>> Sa = std(uFa)
Sa = 0.4246
```

From a t-Table with 2 degrees of freedom, 5\% tails corresponds to a t-score of 2.92
The 90% confidence interval is thus

```
        \overline{x}}-2.92s<b<\overline{x}+2.92
>>Xa + 2.92*Sa
ans=44.8908
>>Xa - 2.92*Sa
ans=42.4110
```

I'm 90% certain that C is in the range of ($\mathbf{4 2 . 4 1 1 0 u F}$... $44.8908 u F)$

Data Collection (population B)

Change something in your experiment

- Use a different 100 uF capacitor

4) Take a second set of data with the change.

Plot the resulting data vs. time

```
>> V1 = Datal(100:900);
>> V2 = Data2(100:900);
>> V3 = Data3(100:900);
>> t = [1:length(V1)]' * 0.01;
>> plot(t,V1,t,V2,t,V3)
>> xlabel('Time')
>> ylabel('Volts');
```


5) Determine the time constant from your data using least-squares

```
>> B = [t, t.^0];
>> A1 = inv(B'*B)*B'*log(V1)
    -0.2388
    1.4019
>> A2 = inv(B'*B)*B'*log(V2)
    -0.2398
    1.3679
>> A3 = inv(B'*B)*B'*log(V3)
    -0.2394
    1.3678
>> Data2 = [C1(1), C2(1), C3(1)]
Data2 = -0.2388 -0.2398 -0.2394
>> uF2 = -[10/C1(1), 10/C2(1), 10/C3(1)]
uF2 = 41.8749 41.7049 41.7789
```

This is the measured capacitange of the second 100 uF capacitor
6) Use a student t test to determine the 90% confidnence interval for your time constant (b).

Again, with a sample size of three (meaning two degrees of freedom), 5% tails corresponds to a t-score of 2.92

```
>> Xb = mean(uF2)
xb}=41.786
>> Sb = std(uF2)
Sb = 0.0852
>> Xb + 2.92*Sb
ans = 42.0351
>> Xb - 2.92*Sb
ans = 41.5374
```

I'm 90% certain that the second 100 uF capacitor is the range of $(41.5374 \mathrm{uF} \ldots 42.0531 \mathrm{uF})$

Comparison of Means Test (A vs. B)

7) Do a comparison of means test to determine the probability that

- The next measurement from A will have a higher value than the next meaurement from B
- Population A has a higher mean than population B

Individual: Create a new variable $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
>> Xw = Xa - Xb
Xw = 1.8646
>> Sw = sqrt(Sa^2 + Sb^2)
Sw = 0.4331
>> t = Xw / Sw
t=4.3055
```

From StatTrek, a t-score of 4.3055 with 2 dof corresponds to a probability of 0.975
I'm 97.5\% certain the the next reading of capacitor A will be higher than the next reading of capacitor B

Population: (take sample size in to account): Create a new variable, $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
>> Xw = Xa - Xb
Xw = 1.8646
>> Sw = sqrt(Sa^2 /3 + Sb^2 /3)
Sw = 0.2500
>> t = Xw / Sw
t = 7.4574
```

From StatTrekm this corresponds to a probability of 0.991
I'm $\mathbf{9 9 . 1 \%}$ certain that capacitor A is larger than capacitor B

