ECE 376 - Homework \#8

Timer 2 Interrupts. Due Monday, October 30th
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Count-Down Timer with 100us Accuracy

1) Write a routine for a count-down timer with a resolution of 100us

- Time is measured to 100 us using Timer2 interrupts
- Each interrupt, pin RC0 is toggled (outputting a 5 kHz square wave on RC0)
- Each interrupt (every 100us), TIME is decremented to zero, stopping at zero
- TIME is displayed on the LCD display to 0.0001s: xx.xxxx
- When you press RB0, the time is reset to 5.0000 seconds
- When you press RB1, the time is reset to 10.0000 seconds
- When you press RB2, the time is reset to 15.0000 seconds
- When you press RB3, the time is reset to 20.0000 seconds

Check the accuracy of your stopwatch

- Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter works)

Set Up Timer2 for 0.1 ms

$$
\begin{aligned}
& N=1,000 \\
& A=10, C=4, B=25
\end{aligned}
$$

7	6	5	4	3	2	1	0				
0	1	0	0	1	1	0	1				
$\mathrm{~A}=10$										$\mathrm{C}=4$	

Timer2 Initialization:

```
// set up Timer2 for 0.1ms
    T2CON = 0x4D;
    PR2 = 24;
    TMR2ON = 1;
    TMR2IE = 1;
    TMR2IP = 1;
    PEIE = 1;
```

Set up counters (need to be long integers)

- $5 \mathrm{~s} \quad \mathrm{~N}=50,000$
- 10s $\mathrm{N}=100,000$
- $15 \mathrm{~s} \mathrm{~N}=150,000$
- 20s $\mathrm{N}=200,000$

Code Size:
Memory Summary:

Program space	used	A3Eh	$2622)$	Of	10000 h bytes	($4.0 \%)$
Data space	used	35h	53)	Of	F80h bytes	$($	$1.3 \%)$
EEPROM space	used	0 h	$0)$	Of	400 h bytes	$($	0.0%)
ID Location space	used	Oh	$0)$	Of	8h nibbles	($0.0 \%)$
Configuration bits	used	Oh	0)	Of	7 h words	($0.0 \%)$

Resulting Program

- RA1 outputs 5.000 kHz
- Timer2 is running at $10 \mathrm{kHz}(0.1 \mathrm{~ms})$

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

- Play note frequency of music note F3 $(174.61 \mathrm{~Hz})$ on pin RC0 when button RB0 is pressed
- Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

Calculating the number of clocks between interrupts:

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=28,635.244
$$

One combination of A, B, C that gets you close is

- $\mathrm{A}=10$
- $\mathrm{C}=16$
- $\mathrm{B}=179$ (178.97)
resulting in T 2 CON being 0 x 4 F

7	6	5	4	3	2	1	0
0	1	0	0	1	1	1	1
$\mathrm{~A}=10$							

Results:

- Frequency $=174.5 \mathrm{~Hz}$
- RA2 toggles when RB0 is pressed (one-key piano)
- Perfect accompanyment for "Burning Down the House" by Talking Heads

Code Size
Memory Summary:
Program space
Data space
EEPROM space
ID Location space used
used
used
used
used
$4 B 4 h$
$1 E h$
$0 h$
$0 h$
$0 h$

$1204)$	of	10000 h bytes	
$30)$	of	F 80 h bytes	$($
$0)$ of	400 h bytes	$($	
$0)$ of	8 h nibbles	$($	
$0)$ of	7 h words	$($	

$\left(\begin{array}{l}1.8 \% \\ (0.8 \%) \\ 0.0 \%) \\ 0.0 \%) \\ 0.0 \%\end{array}\right)$

Code:

```
// Piano.C (/ Set up a Timer2 interrupt for 174.61Hz
// Global Variables
const unsigned char MSGO[21] = "One Note Piano ";
unsigned long int TIME;
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// High-priority service
void interrupt IntServe(void)
{
    if (TMR2IF) {
            RA1 = !RA1;
            if(RB0) RA2 = !RA2;
            TMR2IF = 0;
            }
        }
// Main Routine
void main(void)
    | unsigned char i;
    unsigned int j;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    ADCON1 = 0x0F;
    ADORTA = 0;
    TIME = 0;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
    Wait_ms(100);
// set up Timer2 for 174.61Hz
        T2CON = 0x4F;
        PR2 = 178;
        TMR2ON = 1;
        TMR2IE = 1;
        TMR2IP = 1;
        PEIE = 1;
// turn on all interrupts
GIE = 1;
    while(1) {
        PORTC += 1;
        Wait_ms(1000);
        }
        }
```


Reflex Timer

Problem 3-7) Build an embedded system which measures your reflex time:

- Start a given trial by pressing and releasing RB0
- Once pressed, the PIC waits between 3.00 and 7.00 seconds (random)
- After that time, all of the lights on PORTA turn on.
- When the lights on PORTA turn on, press RB0 again.
- The time delay from when the lights turn on and you press RB0 is then recorded and displyed on the LCD.

3) Write a flow-chart for this program
note: you should have two flow charts: one for the main routine, one for the interrupt

4) Write the corresponding C code
```
Memory Summary:
    EEPROM space used
    ID Location space used
    Configuration bits
```

 Program space used B02h (2818) of 10000 h bytes (4.3\%)
 Data space used \(37 \mathrm{~h}(55)\) of F 80 h bytes (\(1.4 \%\))
 \(B 02 h\)
 $37 h$
$0 h$
$0 h$
$0 h$

5) Collect data on your reaction time

Checking the timing

- RC0 outputs 500.0 Hz
- Timer2 is running at 1.000 ms

Collecting some data

$$
A=\{168.2,169.7,171.1,173.5\} \mathrm{ms}
$$

6) (Population A): From your data, determine

- The 90% confidence interval for your reaction time, and
- The probability that your next trial will be less than 200 ms
- The probability tht your average reaction time is less than 200 ns

```
>> A = [168.2, 169.7, 171.1, 173.5];
>> Xa = mean(A)
Xa=170.7500
>> Sa = std(A)
Sa= 2.6300
>> Xa + 2.3534*Sa
ans = 176.9393
>> Xa - 2.3534*Sa
ans = 164.5607
```

The 90% confidence interval for my reaction time is ($164.56 \mathrm{~ms}, 176.93 \mathrm{~ms}$)

The probability that my reaction time is less than 200 ms is:

```
>> t = (200 - Xa)/Sa
t = 11.1219
```

This corresponds to a probability of 0.998

I'm $\mathbf{9 9 . 8 \%}$ likely to have a reaction time less than $\mathbf{2 0 0 m s}$

7) (Population B): Change something

Head off to class, came back an hour later to take the test again
Times: (ms)

$$
B=\{209.2,200.6,180.3,188.4\}
$$

8) Determine the probability that

- A will have a lower reaction time than B in the next trial
- A has a lower average rection time than B

In Matlab

```
>> B = [209.2, 200.6, 180.3, 188.4]
>> Xb = mean(B)
Xb = 194.2500
>> Sb = std(B)
Sb = 12.8160
>> Xw = Xa - Xb
Xw = -23.5000
>> Sw = sqrt(Sa^2 + Sb^2)
Sw = 13.0831
>> tw = Xw / Sw
tw = -1.7962
```

From a t-table with 3 degrees of freedom, a t-score of 1.7962 corresponds to a probability of 8%
There is an 8% chance that B will be A in the next trial

```
>> Sw = sqrt(Sa^2 / 4 + Sb^2 / 4)
SW = 6.5415
>> tw = Xw / Sw
tw = -3.5924
```

From a t-table with 3 degrees of freedon, a t-score of 3.59 corresponds to a probability of 1.8%
There is a $\mathbf{1 . 8 \%}$ chance my overall reaction time was better after class

