
ECE 376 - Homework #11
z-Transforms and Digital Filters. Due Monday, November 20th

Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

1) Assume X and Y are related by the following transfer function

Y = 


3s+6

s2+10s+30


X

a) What is the differential equation relating X and Y?

Cross multiply

(s2 + 10s + 30)Y = (3s + 6)X

Note that sY means the derivative of y

y + 10y + 30y = 3x + 6x

b) Find y(t) assuming

x(t) = 6 + 5 sin(4t)

Use phasors and superposition:

x(t) = 6

s = 0

X = 6

Y = 


3s+6

s2+10s+30




s=0

⋅ (6)

Y = 1.20

y(t) = 1.20

x(t) = 5 sin(4t)

s = j4

real = cosine, -imag = sineX = 0 − j5

Y = 


3s+6

s2+10s+30




s=j4

⋅ (0 − j5)

Y = −0.2004 − j1.5702

y(t) = −0.2004 cos(4t) + 1.5702 sin(4t)

The total answer is DC + AC

y(t) = 1.20 − 0.2004 cos(4t) + 1.5702 sin(4t)

2) Assume X and Y are related by the following transfer function

Y = 


0.1(z+1)

(z−0.9)(z−0.8)


X

a) What is the difference equation relating X and Y?

Cross multiply

(z − 0.9)(z − 0.8)Y = 0.1(z + 1)X

(z2 − 1.7z + 0.72)Y = 0.1(z + 1)X

Note that zY means y(k+1) or the next value of y(k)

y(k + 2) − 1.7y(k + 1) + 0.72y(k) = 0.1(x(k + 1) + x(k))

b) Find y(t) assuming a sampling rate of T = 0.01 second

x(t) = 6 + 5 sin(4t)

Use superposition and phasors

x(t) = 6

s = 0

z = esT = 1

Y = 


0.1(z+1)

(z−0.9)(z−0.8)




z=1

⋅ (6)

Y = 60.0

x(t) = 5 sin(4t)

X = 0 − j5

s = j4

z = esT = e j0.04

Y = 


0.1(z+1)

(z−0.9)(z−0.8)




z=ej0.04
⋅ (0 − j5)

Y = −24.4898 − j38.9487

meaning

y(t) = −24.4898 cos(4t) + 38.0487 sin(4t)

The total answer is DC + AC

y(t) = 60.00 − 24.4898 cos(4t) + 38.0487 sin(4t)

3) Assume G(s) is a low-pass filter with real poles:

G(s) = 


2000

(s+5)(s+10)(s+20)




3) Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s). Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

The conversion from the s-plane to the z-plane is

z = esT

Converting the three poles:

s = −5 z = esT = 0.9512

s = −10 z = esT = 0.9048

s = −20 z = esT = 0.8187

So, the form of G(z) is

G(z) = 


k

(z−0.9512)(z−0.9048)(z−0.8187)




To find 'k', match the DC gain (any frequency works)

G(s = 0) = 


2000

(s+5)(s+10)(s+20)




s=0

= 2.00

Pick 'k' to set the DC gain of G(z) to be the same

G(z = 1) = 


k

(z−0.9512)(z−0.9048)(z−0.8187)




z=1

= 2.000

k = 0.001648

so

G(z) = 


0.0016846

(z−0.9512)(z−0.9048)(z−0.8187)




Plotting the gain vs. frequency in Matlab

>> w = [0:0.01:30]';
>> s = j*w;
>> Gs = 2000 ./ ((s+5).*(s+10).*(s+20));

>> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.0016846 ./ ((z-0.9512).*(z-0.9048).*(z-0.8187));
>> plot(w,abs(Gs),'b',w,abs(Gz)+0.01,'r')
>> xlabel('rad/sec')

G(s) (blue) & G(z) (red).

Note: G(z) is offset by 0.01 so you can see the two curves

4) Assume G(s) is the following band-pass filter:

G(s) = 


30s

(s+3+j10)(s+3−j10)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s). Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Again, convert from the s-plane to the z-plane as z = esT

s = 0 z = esT = 1

s = −3 + j10 z = esT = 0.9656 + j0.0969

s = −3 − j10 z = esT = 0.9656 − j0.0969

So, the form of G(z) is

G(z) = 


k(z−1)

(z−0.9656+j0.0969)(z−0.9656−j0.0969)




Pick k to match the gain somewhere. DC doesn't work since the gain is zero. Pick somewhere else like

s = j10

G(s = j10) = 


30s

(s+3+j10)(s+3−j10)




s=j10

=4.8900 + j0.7335

G(s = j10) = 4.9447

Match the gain of G(z) at this frequency

z = esT = e j0.1




k(z−1)

(z−0.9656+j0.0969)(z−0.9656−j0.0969)




z=ej0.1
= 4.9447

k = 0.2908

so

G(z) = 


0.2908(z−1)

(z−0.9656+j0.0969)(z−0.9656−j0.0969)




Validation: Plot the gain vs. frequency for G(s) and G(z)

>> w = [0:0.01:20]';
>> s = j*w;
>> Gs = 30*s ./ ((s+3+j*10).*(s+3-j*10));
>>
>> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.2908*(z-1) ./ ((z-0.9656+j*0.0969).*(z-0.9656-j*0.0969));
>> plot(w,abs(Gs),'b',w,abs(Gz)+0.01,'r')
>> xlabel('rad/sec')
>>

G(s) (blue) & G(z) (red).

Note: G(z) is offset by 0.01 so you can see the two curves

5) Write a C program to implement the digital filter, G(z)

 Y = 


0.2908(z−1)

(z−0.9656+j0.0969)(z−0.9656−j0.0969)


X

Multiply out the polynomials and cross multiply

Y = 


0.2908(z−1)

z2−1.9312z+0.9418


X

(z2 − 1.9312z + 0.9418)Y = 0.2908(z − 1)X

Convert to a difference equation

y(k+2) - 1.9312 y(k+1) + 0.9418 y(k) = 0.2908 (x(k+1) - x(k))

Shift by two (change of variable)

y(k) - 1.9312 y(k-1) + 0.9418 y(k-2) = 0.2908 (x(k-1) - x(k-2))

Solve for y(k)

y(k) = 1.9312 y(k-1) - 0.9418 y(k-2) + 0.2908 (x(k-1) - x(k-2))

Convert to C Code

while(1) {

x2 = x1;
x1 = x0
x0 = A2D_Read(0);

y2 = y1;
y1 = y0

y0 = 1.9312*y1 - 0.9418*y2 + 0.2908 * (x1 - x2);

D2A(y0);
Wait_10ms();

 }

Filters & Range Measurement

6) Collect 1000 range measurements using your ultrasonic range sensor (from homework #10).

Plot the raw data (Matlab recommended)

Let's use data from 350 to 850 (looks like cleaner part of the data)

>> Data = Data(350:850);
>> k = [1:length(Data)]';
>> plot(k,Data);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>>

7) For your raw data, compute

The mean and standard devation

The 90% confidence interval for your data.

With a sample size of 500, the t-score for 5% tails is 1.648 (StatTrek)

>> x = mean(Data)

x = 109.2262

>> s = std(Data)

s = 0.3504

>> x + 1.648*s

ans = 109.8037

>> x - 1.648*s

ans = 108.6487

90% of the range data will lie in the range of (108.6487mm - 109.8037mm)

>> plot(k,Data,'b',k,0*k+108.6487,'m--',k,0*k+109.8037,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');

Range Measurements & 90% Confidence Interval

8) Filter your data with a median filter to remove glitches

For the filtered data,

Plot the data (D2)

Compute the mean and standard deviation of D2

Compute the 90% confidence interval of D2

>> D2 = Data
for n=2:length(Data)-1
 Y = sort(Data(n-1:n+1));
 D2(n) = Y(2);
 end
k = [1:length(D2)]';
plot(k,D2);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')
>>

Helped a little, but there are still glitches. Manually get rid of the glitchesr

Manually get rid of the glitches

>> D2(278) = D2(277);
>> D2(279) = D2(277);
>> D2(284) = D2(283);
>> D2(285) = D2(283);
>> plot(k,D2);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')

Find the mean, standard deviation, and 90% confidence interval

x = 109.1983

>> s = std(D2)

s = 0.0140

>> high = x + 1.648*s

high = 109.2214

>> low = x - 1.648*s

low = 109.1752

>> plot(k,D2,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')

++++++++++++++++++++++9) Filter your data with a FIR filter (average of the last five data points).

In Matlab:

D3 = D2;
for n=5:length(D2)
 D3(n) = mean(D2(n-4:n));
 end
k = [1:length(D3)]';
plot(k,D3);

For the filtered data,

Plot the data (D3)

Compute the mean and standard deviation of D3

Compute the 90% confidence interval of D3

>> x = mean(D3)

x = 109.1984

>> s = std(D3)

s = 0.0097

>> high = x + 1.648*s

high = 109.2144

>> low = x - 1.648*s

low = 109.1824

>> plot(k,D3,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>>

10) Filter your data with a IIR filter (2nd-order Butterworth low-pass filter). In Matlab:

s-plane, poles at s = Y = 


4

s2+4s+4


X −2 ± j2

same filter in the z-plane with T = 10msY = 


0.0008

z2−1.9600z+0.9608


X

For the filtered data (y), determine The mean of y / The standard deviation of y / The 90% confidence

interval for the next value of y. Also plot the filtered data, y(k)

>> x = D2;
y(1:2) = mean(x);
for k=3:length(x)
 y(k) = 1.9600*y(k-1)-0.9608*y(k-2)+0.0008*x(k-2);
 end
k = [1:length(x)]';
plot(k,y)
>> x = mean(y)

x = 109.1988

>> s = std(y)

s = 0.0051

>> high = x + 1.648*s

high = 109.2073

>> low = x - 1.648*s

low = 109.1904

>> plot(k,y,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');

