ECE 376 - Homework \#11

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{3 s+6}{s^{2}+10 s+30}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\left(s^{2}+10 s+30\right) Y=(3 s+6) X
$$

Note that $s Y$ means the derivative of y

$$
y^{\prime \prime}+10 y^{\prime}+30 y=3 x^{\prime}+6 x
$$

b) Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=6+5 \sin (4 t)
$$

Use phasors and superposition:
$x(t)=6$

$$
\begin{align*}
& s=0 \\
& X=6 \\
& Y=\left(\frac{3 s+6}{s^{2}+10 s+30}\right)_{s=0} \cdot(6) \tag{6}\\
& Y=1.20 \\
& y(t)=1.20 \\
& \mathrm{x}(\mathrm{t})=5 \sin (4 \mathrm{t}) \\
& s=j 4 \\
& X=0-j 5 \\
& Y=\left(\frac{3 s+6}{s^{2}+10 s+30}\right)_{s=j 4} \cdot(0-j 5) \quad \text { real }=\operatorname{cosine,} \quad \text {-imag }=\text { sine } \\
& Y=-0.2004-j 1.5702 \\
& y(t)=-0.2004 \cos (4 t)+1.5702 \sin (4 t)
\end{align*}
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=1.20-0.2004 \cos (4 t)+1.5702 \sin (4 t)
$$

2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.1(z+1)}{(z-0.9)(z-0.8)}\right) X
$$

a) What is the difference equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& (z-0.9)(z-0.8) Y=0.1(z+1) X \\
& \left(z^{2}-1.7 z+0.72\right) Y=0.1(z+1) X
\end{aligned}
$$

Note that $z Y$ means $y(k+1)$ or the next value of $y(k)$

$$
y(k+2)-1.7 y(k+1)+0.72 y(k)=0.1(x(k+1)+x(k))
$$

b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=6+5 \sin (4 t)
$$

Use superposition and phasors
$x(t)=6$

$$
\begin{aligned}
s & =0 \\
z & =e^{s T}=1 \\
Y & =\left(\frac{0.1(z+1)}{(z-0.9)(z-0.8)}\right)_{z=1} \cdot(6) \\
Y & =60.0 \\
\mathrm{x}(\mathrm{t})=5 & \sin (4 \mathrm{t}) \\
X & =0-j 5 \\
s & =j 4 \\
z & =e^{s T}=e^{j 0.04} \\
Y & =\left(\frac{0.1(z+1)}{(z-0.9)(z-0.8)}\right)_{z=e^{j 0.04}} \cdot(0-j 5) \\
Y & =-24.4898-j 38.9487
\end{aligned}
$$

meaning

$$
y(t)=-24.4898 \cos (4 t)+38.0487 \sin (4 t)
$$

The total answer is DC + AC

$$
y(t)=60.00-24.4898 \cos (4 t)+38.0487 \sin (4 t)
$$

3) Assume $\mathrm{G}(\mathrm{s})$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{2000}{(s+5)(s+10)(s+20)}\right)
$$

3) Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
The conversion from the s-plane to the z-plane is

$$
z=e^{s T}
$$

Converting the three poles:

$$
\begin{array}{ll}
s=-5 & z=e^{s T}=0.9512 \\
s=-10 & z=e^{s T}=0.9048 \\
s=-20 & z=e^{s T}=0.8187
\end{array}
$$

So, the form of $G(z)$ is

$$
G(z)=\left(\frac{k}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)
$$

To find ' k ', match the DC gain (any frequency works)

$$
G(s=0)=\left(\frac{2000}{(s+5)(s+10)(s+20)}\right)_{s=0}=2.00
$$

Pick ' k ' to set the $D C$ gain of $G(z)$ to be the same

$$
G(z=1)=\left(\frac{k}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=1}=2.000
$$

$$
k=0.001648
$$

so

$$
G(z)=\left(\frac{0.0016846}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)
$$

Plotting the gain vs. frequency in Matlab

```
>> w = [0:0.01:30]';
>> s = j*w;
>>Gs = 2000./ ( (s+5).* (s+10).* (s+20) );
> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.0016846 ./ ( (z-0.9512).*(z-0.9048).*(z-0.8187) );
>> plot(w,abs(Gs),'b',w,abs(Gz)+0.01,'r')
>> xlabel('rad/sec')
```


G(s) (blue) \& G(z) (red).
Note: $G(z)$ is offset by 0.01 so you can see the two curves
4) Assume $G(s)$ is the following band-pass filter:

$$
G(s)=\left(\frac{30 s}{(s+3+j 10)(s+3-j 10)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
Again, convert from the s-plane to the z-plane as $z=e^{s T}$

$$
\begin{array}{ll}
s=0 & z=e^{s T}=1 \\
s=-3+j 10 & z=e^{s T}=0.9656+j 0.0969 \\
s=-3-j 10 & z=e^{s T}=0.9656-j 0.0969
\end{array}
$$

So, the form of $\mathrm{G}(\mathrm{z})$ is

$$
G(z)=\left(\frac{k(z-1)}{(z-0.9656+j 0.0969)(z-0.9656-j 0.0969)}\right)
$$

Pick k to match the gain somewhere. DC doesn't work since the gain is zero. Pick somewhere else like $\mathrm{s}=\mathrm{j} 10$

$$
\begin{aligned}
& G(s=j 10)=\left(\frac{30 s}{(s+3+j 10)(s+3-j 10)}\right)_{s=j 10}=4.8900+\mathrm{j} 0.7335 \\
& |G(s=j 10)|=4.9447
\end{aligned}
$$

Match the gain of $\mathrm{G}(\mathrm{z})$ at this frequency

$$
\begin{aligned}
& z=e^{s T}=e^{j 0.1} \\
& \left|\left(\frac{k(z-1)}{(z-0.9656+j 0.0969)(z-0.9656-j 0.0969)}\right)\right|_{z=e^{j 0.1}}=4.9447
\end{aligned}
$$

$$
k=0.2908
$$

so

$$
G(z)=\left(\frac{0.2908(z-1)}{(z-0.9656+j 0.0969)(z-0.9656-j 0.0969)}\right)
$$

Validation: Plot the gain vs. frequency for $G(s)$ and $G(z)$

```
>> w = [0:0.01:20]';
>> s = j*W;
>>Gs = 30*S ./ ( (s+3+j*10).*(s+3-j*10) );
>>
>> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.2908*(z-1) ./ ( (z-0.9656+j*0.0969).*(z-0.9656-j*0.0969) );
>> plot(w,abs(Gs),'b',w,abs(Gz)+0.01,'r')
>> xlabel('rad/sec')
>>
```


$\mathrm{G}(\mathrm{s})$ (blue) \& G(z) (red).
Note: $G(z)$ is offset by 0.01 so you can see the two curves
5) Write a C program to implement the digital filter, $G(z)$

$$
Y=\left(\frac{0.2908(z-1)}{(z-0.9656+j 0.0969)(z-0.9656-j 0.0969)}\right) X
$$

Multiply out the polynomials and cross multiply

$$
\begin{aligned}
& Y=\left(\frac{0.2908(z-1)}{z^{2}-1.9312 z+0.9418}\right) X \\
& \left(z^{2}-1.9312 z+0.9418\right) Y=0.2908(z-1) X
\end{aligned}
$$

Convert to a difference equation

$$
y(k+2)-1.9312 y(k+1)+0.9418 y(k)=0.2908(x(k+1)-x(k))
$$

Shift by two (change of variable)

$$
y(k)-1.9312 y(k-1)+0.9418 y(k-2)=0.2908(x(k-1)-x(k-2))
$$

Solve for $y(k)$

$$
y(k)=1.9312 y(k-1)-0.9418 y(k-2)+0.2908(x(k-1)-x(k-2))
$$

Convert to C Code

```
while(1) {
    x2 = x1;
    x1 = x0
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0
    y0 = 1.9312*y1 - 0.9418*y2 + 0.2908 * ( x1 - x2 );
    D2A(y0);
    Wait_10ms();
    }
```


Filters \& Range Measurement

6) Collect 1000 range measurements using your ultrasonic range sensor (from homework \#10).

- Plot the raw data (Matlab recommended)

Let's use data from 350 to 850 (looks like cleaner part of the data)

```
>> Data = Data(350:850);
>> k = [1:length(Data)]';
>> plot(k,Data);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>>
```


7) For your raw data, compute

- The mean and standard devation
- The 90% confidence interval for your data.

With a sample size of 500, the t -score for 5% tails is 1.648 (StatTrek)

```
>> x = mean(Data)
x = 109.2262
>> s = std(Data)
s = 0.3504
>> x + 1.648*s
ans = 109.8037
>> x - 1.648*s
ans = 108.6487
```


90% of the range data will lie in the range of $(108.6487 \mathrm{~mm}-109.8037 \mathrm{~mm})$

```
>> plot(k,Data,'b',k,0*k+108.6487,'m--',k,0*k+109.8037,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
```


8) Filter your data with a median filter to remove glitches

For the filtered data,

- Plot the data (D2)
- Compute the mean and standard deviation of D2
- Compute the 90% confidence interval of D2

```
>> D2 = Data
for n=2:length(Data)-1
    Y = sort(Data(n-1:n+1));
    D2(n) = Y(2);
    end
k = [1:length(D2)]';
plot(k,D2);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')
>>
```

Helped a little, but there are still glitches. Manually get rid of the glitchesr

Manually get rid of the glitches

```
>> D2(278) = D2(277);
>> D2(279) = D2(277);
>> D2(284) = D2(283);
>> D2(285) = D2(283);
>> plot(k,D2);
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')
```

Find the mean, standard deviation, and 90% confidence interval

```
x = 109.1983
>> s = std(D2)
```

```
s = 0.0140
>> high = x + 1.648*s
high = 109.2214
>> low = x - 1.648*s
low = 109.1752
>> plot(k,D2,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
>> title('Median Filter')
```


+++++++++++++++++++++++++9) Filter your data with a FIR filter (average of the last five data points). In Matlab:

```
D3 = D2;
for n=5:length(D2)
    D3(n) = mean(D2(n-4:n));
    end
k = [1:length(D3)]';
plot(k,D3);
```

For the filtered data,

- Plot the data (D3)
- Compute the mean and standard deviation of D3
- Compute the 90% confidence interval of D3

```
>> x = mean(D3)
x = 109.1984
>> s = std(D3)
s=0.0097
>> high = x + 1.648*s
high = 109.2144
>> low = x - 1.648*s
low = 109.1824
>> plot(k,D3,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>>
```


10) Filter your data with a IIR filter (2nd-order Butterworth low-pass filter). In Matlab:

$$
\begin{array}{ll}
Y=\left(\frac{4}{s^{2}+4 s+4}\right) X & \text { s-plane, poles at } \mathrm{s}=-2 \pm j 2 \\
Y=\left(\frac{0.0008}{z^{2}-1.9600 z+0.9608}\right) X & \text { same filter in the z-plane with } \mathrm{T}=10 \mathrm{~ms}
\end{array}
$$

For the filtered data (y), determine The mean of y/The standard deviation of y / The 90% confidence interval for the next value of y . Also plot the filtered data, $\mathrm{y}(\mathrm{k})$

```
>> x = D2;
y(1:2) = mean(x);
for k=3:length(x)
    y(k) = 1.9600*y(k-1)-0.9608*y(k-2)+0.0008*x(k-2);
    end
k = [1:length(x)]';
plot(k,y)
>> x = mean(y)
x = 109.1988
>> s = std(y)
s=0.0051
>> high = x + 1.648*s
high = 109.2073
>> low = x - 1.648*s
low = 109.1904
>> plot(k,y,'b',k,0*k+high,'m--',k,0*k+low,'m--');
>> xlabel('Sample Number');
>> ylabel('Distance (mm)');
```


