ECE 376 - Homework #1

PIC Background. Due Wednesday, January 22nd

	Answer
1) A PIC processor can drive up to 25mA on its I/O pins. Assuming the output is 5V, what is the smallest R2 can be?	5V / 25mA = 200
	200 Ohms
2) The PIC processor we're using can measure time to 100ns. Assume you're generating the note C3 (220Hz). What's the smallest change in frequency a PIC can generate at 220Hz? (i.e. if you add 100ns to the period)?	0.009679Hz
3) The PIC can measure time to 100ns (one clock). How many clocks go by from the time a pitcher throws a 100mph fast ball to the time it crosses the plate 90 feet away?	6,136,364
	clocks
4) The A/D on a PIC is a 10-bit A/D (meaning you can read 05V with a resolution of one part in 1023 (4.88mV).	2.599 Ohms
Suppose you use your PIC to measure resistance using a voltage divider shown below. If R1 is 750 Ohms, what is the resolution of the ohm-meter in Ohms? (hint: the resolution is 4.88mV. Convert this to Ohms)	
5) If R1 is a temperature sensor (in your kit) with	T = 304.69K
$R \approx 1000 \cdot \exp\left(\frac{3903}{T} - \frac{3903}{298}\right)$	dT = 0.0947K
What temperature corresponds to 750 Ohms? What is the resolution of this temperature sensor in degrees C?	

1) A PIC processor can drive up to 25mA on its I/O pins. Assuming the output is 5V, what is the smallest R2 can be?

$$R = \left(\frac{5V}{25mA}\right) = 200\Omega$$

If you want to drive an 8 Ohm speaker with a PIC processor, add a 200 Ohm resistor in series.

2) The PIC processor we're using can measure time to 100ns. Assume you're generating the note C3 (220Hz). What's the smallest change in frequency a PIC can generate at 220Hz? (i.e. if you add 100ns to the period)?

The width of 1/2 cycle (toggle twice every cycle) is

$$t_1 = \left(\frac{1}{2 \cdot 220 Hz}\right) = 2.272727 ms$$

The smallest amount of time you can add is 1 clock (100ns).

 $t_2 = t_1 + 100ns = 2.272827ms$

This corresponds to a frequency of

$$Hz = \frac{1}{2 \cdot t_2} = 219.9903 Hz$$

for a change in frequency of

$$\delta Hz = 0.009679 Hz$$

3) The PIC can measure time to 100ns (one clock). How many clocks go by from the time a pitcher throws a 100mph fast ball to the time it crosses the plate 90 feet away?

90ft = 27.432 m
100mph = 44.704 m/s

$$t = \left(\frac{27.432m}{44.604m/s}\right) = 0.613636s$$

 $clocks = (0.613636s) \left(\frac{10,000,000clocks}{s}\right) = 6,136,364$

A PIC can execute 6,136,364 clocks by the time a baseball crosses the plate.

4) The A/D on a PIC is a 10-bit A/D (meaning you can read 0..5V with a resolution of one part in 2014 (4.88mV).

Suppose you use your PIC to measure resistance using a voltage divider shown below. If R1 is 750 Ohms, what is the resolution of the ohm-meter in Ohms? (hint: the resolution is 4.88mV. Convert this to Ohms)

$$V_1 = \left(\frac{750}{750+1000}\right) 5V = 2.1429V$$

The smallest change in voltage you can measure is 4.88mV

$$V_2 = V_1 + 0.00488$$

This corresponds to a resistance of

$$R_2 = \left(\frac{V_2}{5 - V_2}\right) 1000 = 752.9941\Omega$$

The smallest change in resistance you can measure is 2.599 Ohms

5) 750 Ohms corresponds to

$$R \approx 1000 \cdot \exp\left(\frac{3903}{T} - \frac{3903}{298}\right)$$
$$T = 304.6926K$$

752.599 Ohms corresponds to

$$T = 305.5978K$$

The difference is 0.0947K

With this circuit, a PIC can measure a temperature difference of 0.0947K