ECE 376 - Homework \#1

PIC Background. Due Wednesday, January 19th
Please make the subject "ECE 376 HW\#1" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) A PIC processor can drive up to 25 mA on its I/O pins. Assuming the output is 5 V , what is the smallest resistance you can connect to an output pin?

- i.e. how small can R2 be (figure next page)

A PIC can measure voltage to $\mathbf{4 . 8 8 m V}$. To give an idea of how small this is....
2) What is the smallest change in R1 a PIC can measure if R1 $=500 \mathrm{Ohms}$ nominally?
$V=\left(\frac{R_{1}}{1000+R_{1}}\right) \cdot 5 V$
3) The world record for the highest vertical leap is 65 inches.

- How long are you in the air for a 65 inch vertical leap?
- If you can measure time to 100 ns , how precisely can you measure this distance? (i.e. how much higher do you have to jump for your air-time to be 100ns longer?

4) The world record for a 100 m dash is 9.58 seconds (Usain Bolt). How far behind would you have to be (in meters) if you cross the finish line 100ns behind Usain Bolt?
5) A 555 timer (next page) outputs a square wave with the period of $\mathrm{T}=(\mathrm{R} 1+2 \mathrm{R} 2) * \mathrm{C} * \ln (2)$ seconds
What frequency does the 555 timer output if $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k}, \mathrm{C}=0.1 \mathrm{uF}$?
6) What is the smallest change in frequency a PIC can detect?

- i.e. how much does the frequency have to change for the period to change by 100ns?

7) With this circuit, you can build an ohm-meter: by mesuring the period, you can compute the resistance.

- What is the smallest change in R2 a PIC can detect?
- i.e. how much does R2 have to change for the period to change by 100 ns ?

8) With this circuit, you can build a temperature sensor: by mesuring the period, you can compute the resistance and from that determine the temperature.

- What is the smallest change in temperature a PIC can detect?
- i.e. how much does R2 have to change for the period to change by 100 ns ?

Assume the temperature - resistance relationship of R 2 is as follows where T is the temperature in degrees C. Also assume the temperature is $25 \mathrm{C}(\mathrm{R} 2=10 \mathrm{k} \mathrm{Ohms})$

$$
R_{2}=10000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Problem \#1 \& \#2

Astable 555 Timer: Problems 5-8
The square wave at the Output has a period of $T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)$ seconds

