ECE 376 - Homework \#6

A/D Converters \& Data Collection. Due Monday, February 28th

A/D Converters

1) (10pt) Determine how long it takes to do an A/D conversion with a PIC processor
```
void main(void)
{
    TRISC = 0;
    ADCON1 = 0x0F;
// Turn on the A/D input
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x95;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    while(1) {
        A2D = A2D_Read(0);
        PORTC = PORTC + 1;
        }
    }
```

2) (10pt) Assume the A / D reads 813 for the following circuit.

- What is the voltage, Vx?
- What is the resitance, Rt?
- What is the temperature?

Assume Rt is a thermistor like the one in your lab kit:

$$
R_{t}=1000 \cdot \exp \left(\frac{3904}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C

3-5) Design an embedded sytem which uses the analog input on RA0. Some suggestions are:

- Electronic Trombine: Play $400 \mathrm{~Hz}(\mathrm{~A} / \mathrm{D}=0)$ to $500 \mathrm{~Hz}(\mathrm{~A} / \mathrm{D}=1023)$ when you press RB 0
- Electronic Die: Control the number of sides of the die with the analog input ($\mathrm{N}=1 . .20$). Roll an N sided die each time you press RB0. Flash the lights on PORTA when the roll is N .
- Stepper Motor Thermomoter: Read the temperature with the A/D input. Indicate the temperatuer on a stepper motor (0 steps $=0$ degrees, 100 steps $=100$ degrees $)$
- Other

3) Requirements: Specity

- The inputs (including at least one analog input).
- The outputs. amd
- How they relate (i.e. what it does)

4) C-code and flow chart
5) Testing and Validation

- Collect data to shot you met the requirements

Data Collection

6) Use your PIC board to measure and record via the serial port (pick one)

- The voltage across a 100 uF capacitor as it discharges from 5.00 V
- The temperature of hot water in a coffee cup with a lid
- The temperature of hot water in a coffee cup without a lid
- The voltage across a AA battery as it discharges across a 10 Ohm resistor,
- Other

Collect

- At least 100 data points for each test, and
- At least 2 test runs (you will need at least two data sets for homework \#7)

Plot your data in Matlab (or your favorite program)
7) Convert your data to a number

- The time constant (a) for a 100 uF capacitor: $\mathrm{V}=\mathrm{V} 0 \exp (-\mathrm{at})$
- The time constant for the hot cup of coffee: $\mathrm{T}=\mathrm{T} 0 \exp (-\mathrm{at})+\mathrm{T}$ (room)
- The energy in the battery in Joules: $E=\int\left(\frac{V^{2}}{R}\right) d t$

