ECE 376 - Final Exam: Name

Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.

1) Binary Inputs: Assume a 6411 NPN transistor (if needed)

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\quad \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$
- $\beta=300$
- $\max (\mathrm{Ic})=6 \mathrm{~A}$

1a) Give a circuit which allows a PIC to turn on and off a 20 mW LED at 10 mA

- $\mathrm{Id}=10 \mathrm{~mA}$
- $\mathrm{Vd}=2.0 \mathrm{~V}$

1b) Give a circuit which allows a PIC to turn on and off a 30W LED

- $\mathrm{Vd}=15.0 \mathrm{~V}$
- $\mathrm{Id}=2.0 \mathrm{~A}$

2) Analog Inputs: A CdS light sensor has the following resistance - lux (light intensity) relationship

$$
R_{2}=1000 \cdot\left(\frac{10}{L u x}\right)^{0.6} \mathrm{Ohms}
$$

If the room is 100 Lux, determine

- The resistance,
- The voltage,
- The A/D reading, and
- The resolution (the smallest change in Lux you can detect)
with the following circuit. Assume

- $\mathrm{R}=900+100 *$ (your birth month) + (your birth date)

R $900+100^{*}$ mo + day	A/D reading $0 . .1023$	Voltage votlage at 100 Lux	R resistance at 100 Lux	Resolution smallest change in Lux you can measure

3) C-Coding: Write a C progra to turn your PIC into a $\$ 65$ SR flip flop. Assume the following pin assignments

PORTB							
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
-	-	-	Q output	!Q output	S input	R input	CLK
input							

4) C Coding with Analog Inputs: Assume a temperature sensor is connected to a PIC so that the A/D reading is $10 x$ the temperature in degrees F.

Write a C program which turns on and off a fan connected to RC0 based upon the temperature

Temperature	A/D reading	$\%$ On	On-Time (RC0)	Off-Time (RC0)
$\mathrm{T}>85 \mathrm{~F}$	$850-1023$	100%	always on	
$80 \mathrm{~F}<\mathrm{T}<85 \mathrm{~F}$	$800-849$	75%	45 seconds	15 seconds
$75<\mathrm{T}<80$	$750-799$	50%	30 seconds	30 seconds
$70<\mathrm{T}<75$	$700-749$	25%	15 seconds	45 seconds
$\mathrm{T}<70$	$0-699$	0%	-	always off

```
void main(void)
{
// Initialize the A/D port
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x85;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    while(1) {
```

5) 20ms Delay (take 1): Using one or more Timer and/or INT interrupts, write the interrupt service routine for a C program which

- Reads in X , a TTL signal $(0 \mathrm{~V} / 5 \mathrm{~V})$, and
- Outputs Y, the same waveform with a 20 ms delay.

Assume each edge is more than 20 ms apart

Input Pin (your pick)	Output Pin (your pick)	Pre-scalar assumed if needed

// Global Variables (if needed)
// Interrupts service routine
void interrupt IntServe(void) \{
6) 20ms Delay (take 2 - Capture / Compare Interrupts): Write a program which uses Capture \& Compare interrupts to

- Output a waveform (Y) which is identical to X, only
- Y is delayed by 20 ms

Assume each edge is more than 20 ms apart

Timer1 Interrupt assume pre--scalar $=8$	Capture1 (Input)	Compare2 (Output)
if (TMR1IF) $\{$	if (CCP1IF) $\}$	if (CCP2IF) \{

