## ECE 376 - Final Exam: Name \_

Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.

1) Binary Inputs: Assume a 6411 NPN transistor (if needed)

- Vbe = 0.7V
- Vce(sat) = 0.2V
- $\beta = 300$
- max(Ic) = 6A

1a) Give a circuit which allows a PIC to turn on and off a 20mW LED at 10mA

- Id = 10mA
- Vd = 2.0V

1b) Give a circuit which allows a PIC to turn on and off a 30W LED

- Vd = 15.0V
- Id = 2.0A

2) Analog Inputs: A CdS light sensor has the following resistance - lux (light intensity) relationship

$$R_2 = 1000 \cdot \left(\frac{10}{Lux}\right)^{0.6}$$
 Ohms

If the room is 100 Lux, determine

- The resistance,
- The voltage,
- The A/D reading, and
- The resolution (the smallest change in Lux you can detect)

with the following circuit. Assume

•  $R = 900 + 100^{*}$ (your birth month) + (your birth date)



| R<br>900 + 100*mo + day | A/D reading<br>01023 | Voltage<br>votlage at 100 Lux | R<br>resistance at 100 Lux | Resolution<br>smallest change in Lux you<br>can measure |
|-------------------------|----------------------|-------------------------------|----------------------------|---------------------------------------------------------|
|                         |                      |                               |                            |                                                         |

3) C-Coding: Write a C progra to turn your PIC into a \$65 SR flip flop. Assume the following pin assignments

| PORTB |     |     |             |              |            |            |              |
|-------|-----|-----|-------------|--------------|------------|------------|--------------|
| RB7   | RB6 | RB5 | RB4         | RB3          | RB2        | RB1        | RB0          |
| -     | -   | -   | Q<br>output | !Q<br>output | S<br>input | R<br>input | CLK<br>input |



4) C Coding with Analog Inputs: Assume a temperature sensor is connected to a PIC so that the A/D reading is 10x the temperature in degrees F.

| Temperature   | A/D reading | % On | On-Time (RC0) | Off-Time (RC0) |
|---------------|-------------|------|---------------|----------------|
| T > 85F       | 850 - 1023  | 100% | always on     |                |
| 80F < T < 85F | 800 - 849   | 75%  | 45 seconds    | 15 seconds     |
| 75 < T <80    | 750 - 799   | 50%  | 30 seconds    | 30 seconds     |
| 70 < T < 75   | 700 - 749   | 25%  | 15 seconds    | 45 seconds     |
| T < 70        | 0 - 699     | 0%   | -             | always off     |

Write a C program which turns on and off a fan connected to RC0 based upon the temperature

```
void main(void)
{
// Initialize the A/D port
  TRISA = 0xFF;
  TRISE = 0x0F;
  ADCON2 = 0x85;
  ADCON1 = 0x07;
  ADCON0 = 0x01;
```

while(1) {

5) 20ms Delay (take 1): Using one or more Timer and/or INT interrupts, write the interrupt service routine for a C program which

- Reads in X, a TTL signal (0V/5V), and
- Outputs Y, the same waveform with a 20ms delay.

Assume each edge is more than 20ms apart



| Input Pin   | Output Pin  | Pre-scalar assumed |
|-------------|-------------|--------------------|
| (your pick) | (your pick) | if needed          |
|             |             |                    |

// Global Variables (if needed)

// Interrupts service routine

void interrupt IntServe(void) {

6) 20ms Delay (take 2 - Capture / Compare Interrupts): Write a program which uses Capture & Compare interrupts to

- Output a waveform (Y) which is identical to X, only
- Y is delayed by 20ms

Assume each edge is more than 20ms apart



| Timer1 Interrupt<br>assume prescalar = 8 | Capture1 (Input) | Compare2 (Output) |
|------------------------------------------|------------------|-------------------|
| if(TMR1IF) {                             | if (CCP1IF) {    | if(CCP2IF) {      |
|                                          |                  |                   |