ECE 376 - Homework \#1

PIC Background. Due Wednesday, January 19th
Please make the subject "ECE 376 HW\#1" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) A PIC processor can drive up to 25 mA on its I/O pins. Assuming the output is

200 Ohms
5 V , what is the smallest resistance you can connect to an output pin?

- i.e. how small can R2 be (figure next page)

A PIC can measure voltage to 4.88 mV . To give an idea of how small this is....
2) What is the smallest change in R1 a PIC can measure if R1 $=500 \mathrm{Ohms}$
2.199 Ohms nominally?
$V=\left(\frac{R_{1}}{1000+R_{1}}\right) \cdot 5 V$
3) The world record for the highest vertical leap is 65 inches.
0.41 sec

- How long are you in the air for a 65 inch vertical leap? 804nm
- If you can measure time to 100 ns , how precisely can you measure this distance? (i.e. how much higher do you have to jump for your air-time to be 100ns longer?

4) The world record for a 100 m dash is 9.58 seconds (Usain Bolt). How far behind
1.04 um would you have to be (in meters) if you cross the finish line 100ns behind Usain Bolt?
5) A 555 timer (next page) outputs a square wave with the period of
686.997 Hz $\mathrm{T}=(\mathrm{R} 1+2 \mathrm{R} 2) * \mathrm{C} * \ln (2)$ seconds
What frequency does the 555 timer output if $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k}, \mathrm{C}=0.1 \mathrm{uF}$?
6) What is the smallest change in frequency a PIC can detect?

- i.e. how much does the frequency have to change for the period to change by 100ns?

7) With this circuit, you can build an ohm-meter: by mesuring the period, you can
0.72 Ohms compute the resistance.

- What is the smallest change in R2 a PIC can detect?
- i.e. how much does R2 have to change for the period to change by 100 ns ?

8) With this circuit, you can build a temperature sensor: by mesuring the period, you can compute the resistance and from that determine the temperature.
0.00164 degrees \mathbf{C}

- What is the smallest change in temperature a PIC can detect?
- i.e. how much does R2 have to change for the period to change by 100 ns ?

Assume the temperature - resistance relationship of R 2 is as follows where T is the temperature in degrees C. Also assume the temperature is 25 C ($\mathrm{R} 2=10 \mathrm{k}$ Ohms)

$$
R_{2}=10000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Problem 1)

$$
\begin{aligned}
& V=I R \\
& 5 V=25 \mathrm{~mA} \cdot R_{2} \\
& R_{2}=\frac{5 \mathrm{~V}}{25 \mathrm{~mA}}=200 \Omega
\end{aligned}
$$

Any load connected to a PIC needs to be at least 200 Ohms. If it's less (like an 8 -Ohm speaker), add a resistor in series to make it 200 Ohms.

- That makes the speaker quieter, but it's necessary to save the PIC

Problem 2) What is the smallest change in R1 a PIC can measure if R1 $=500$ Ohms nominally? When R1 = 500 Ohms

$$
V=\left(\frac{500}{500+1000}\right) 5 V=1.66667 V
$$

V has to change by 4.88 mV for the PIC to detect the change

$$
V+4.88 m V=1.67155 \mathrm{~V}
$$

which means that R1 needs to be

$$
\begin{aligned}
& \left(\frac{R_{1}}{R_{1}+1000}\right) 5 V=1.67155 V \\
& R_{1}=\left(\frac{1.67155 \mathrm{~V}}{5 V-1.67155 V}\right) 1000 \Omega=502.199 \Omega
\end{aligned}
$$

The smallest change in resistance you can detect is 2.199 Ohms

Problem 3) The world record for the highest vertical leap is 65 inches.

- How long are you in the air for a 65 inch vertical leap?

If you can measure time to 100 ns , how precisely can you measure this distance? (i.e. how much higher do you have to jump for your air-time to be 100ns longer?

From physics, the time from the appogee to ground is

$$
d=\frac{1}{2} a t^{2}
$$

The total time is double this

$$
\begin{aligned}
& d=a t^{2} \\
& 1.65100000 m=\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2}
\end{aligned}
$$

$$
t=0.410450226 \text { seconds }
$$

Adding 100ns

$$
t+\Delta t=0.410450326 \text { seconds }
$$

The distance becomes

$$
d=a t^{2}=1.651000804 \text { meters }
$$

for a difference of

$$
\Delta d=0.000000804 m
$$

$$
\Delta d=804.5 \mathrm{~nm}
$$

Less than the size of a bacteria

If you can convert a measurement to time, a PIC is really accurate

Problem 4) The world record for a 100 m dash is 9.58 seconds (Usain Bolt). How far behind would you have to be (in meters) if you cross the finish line 100ns behind Usain Bolt?

$$
\begin{aligned}
& v=\left(\frac{100 \mathrm{~m}}{9.58 s}\right)=10.43841336 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& d=v \cdot 100 \mathrm{~ns}=1.044 \mu \mathrm{~m}
\end{aligned}
$$

You could tell if 2nd place was 1.044um behind (about the size of a bactera, 180x less than a human hair

Problem 5) A 555 timer (next page) outputs a square wave with the period of

$$
\mathrm{T}=(\mathrm{R} 1+2 \mathrm{R} 2) * \mathrm{C} * \ln (2) \text { seconds }
$$

What frequency does the 555 timer output if $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k}, \mathrm{C}=0.1 \mathrm{uF}$?

$$
\begin{aligned}
& T=(1 k+2 \cdot 10 k) \cdot 0.1 \mu F \cdot \ln (2) \\
& T=1.455609 m s \\
& f=\frac{1}{T}=686.9976 H z
\end{aligned}
$$

Problem 6) What is the smallest change in frequency a PIC can detect?

$$
\begin{aligned}
& T=T+100 \mathrm{~ns}=1.455708 \mathrm{~ms} \\
& f=\frac{1}{T}=686.9504 \mathrm{~Hz}
\end{aligned}
$$

which is a difference of $0.04719 \mathrm{~Hz}(0.00687 \%)$

Problem 7) With this circuit, you can build an ohm-meter: by mesuring the period, you can compute the resistance.

- What is the smallest change in R2 a PIC can detect?

$$
T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

If R2 $=10 \mathrm{k}$ Ohms

$$
T=1.455609 \mathrm{~ms}
$$

If T is 100 ns longer

$$
T+\Delta T=1.455709 \mathrm{~ms}
$$

then R 2 is

$$
R_{2}=10000.72 \Omega
$$

You can detect a change of 0.72 Ohms
i.e. how much does R2 have to change for the period to change by 100 ns ?

Problem \#8: If

$$
R_{2}=10000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

then $10,000.72 \mathrm{Ohms}$ corresponds to a temperature of

$$
T=24.99836^{0} C
$$

for a change of

$$
\Delta T=-0.00164^{\circ} \mathrm{C}
$$

A PIC could detect a change in temperature of 0.0016 degrees C

