ECE 376 - Homework \#2

Assembler, Flow Charts. Due Monday, January 25th
Please make the subject "ECE 376 HW\#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Convert the following C code to assembler (8-bit operations)
; unsigned char $\mathrm{A}, \mathrm{B}, \mathrm{C}$;

A	equ	0
B	equ	1
C	equ	2
; $\mathrm{A}=2 * \mathrm{~B}+3 * \mathrm{C}+4 ;$		
	movlw	4
	addwf	B, W
	addwf	B, W
	addwf	C, W
	addwf	C, W
	addwf	C, W

2) Convert the following C code to assembler: (16-bit operations)
```
;unsigned int A, B, C;
```

A	equ	0
B	equ	2
C	equ	4
; $A=$	$2 * B+$	$3 * C+$

movlw	4
movwf	A
clrf	A +1

 movf B,W
 addwf A, F
 movf \(B+1, W\)
 addwfc \(\mathrm{A}+1, \mathrm{~F}\)
 movf B,W
 addwf A,F
 movf \(B+1, W\)
 addwfc A+1,F
 movf C,W
 addwf A, F
 movf \(\mathrm{C}+1, \mathrm{~W}\)
 addwfc A+1,F
 movf C,W
 addwf A,F
 movf \(\mathrm{C}+1\), W
 addwfc A+1,F
 movf C,w
 addwf A,F
 movf \(\mathrm{C}+1, \mathrm{~W}\)
 addwfc A+1,F
 3) Convert the following C code to assembler (traffic light controller: output green, yellow, red)
```
; unsigned char A, B;
A equ 0
B equ 1
; A = A + 1;
    incf A,F
; if(A > 2) A = 0;
    movlw 2
    cpfsgt A
    goto L1
    clrf A
L1:
; if(A == 0) B = 1;
    movlw 0
    cpfseq A
    goto L2
    movlw 1
    movwf B
L2:
; else if(A == 1) B = 2;
    movlw 1
    cpfseq A
    goto L3
    movlw 2
    movwf B
    goto L4
; else B = 4;
L3:
    movlw 4
    movwf B
L5:
    nop
```

4) Convert the following C code in to assembler

5) The flow chart below turns your PIC into an electornic slot machine:

- Press RB0 to play \quad RBO is PORTB pin 0 ($R B 0$ is the name for that pin in C code)
- If the number 5 comes up (1 in 8 chance), you win $\$ 7$. Otherwise you lose $\$ 1$

Write the corresponding assembler code.

6) The flow chart below turns your PIC into an electronic voting machine

- On reset, all votes are set to zero $(\mathrm{Va}=\mathrm{Vb}=\mathrm{Vc}=0)$
- When RB0 is pressed, one vote is counted for candidate A
- When RB1 is pressed, one vote is counted for candidate B
- When RB2 is pressed, one vote is counted for candidate C

Write the corresponding assembler code

Va	equ	0
Vb	equ	1
Vc	equ	2
	org	0×800
	movlw	0 xFF
	movwf	TRISB
	clrf	Va
	clrf	Vb
	clrf	Vc
	movlw	0x0F
	movwf	ADCON1
L1:		
	movlw	0
	cpfsgt	PORTB
	goto	L1
	btfsc	PORTB, 0
	incf	Va, F
	btfsc	PORTB, 1
	incf	Vb, F
	btfsc	PORTB, 2
	incf	VC, F
L2:		
	movlw	0
	cpfseq	PORTB
	goto	L2
	goto	L1

Problem 6: Votina Machine

