ECE 376 - Homework #2

Assembler, Flow Charts. Due Monday, January 25th

Please make the subject "ECE 376 HW#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Convert the following C code to assembler (8-bit operations)

;unsigned char A, B, C;

A B C	equ equ equ	0 1 2
;A =	2*B + 3*C	+ 4;
	movlw	4
	addwf addwf	B,W B,W
	addwf addwf addwf	C,W C,W C,W
	movwf	A

2) Convert the following C code to assembler: (16-bit operations)

;unsigned int A, B, C;

А

В

С

0 equ 2 equ 4 equ ;A = 2*B + 3*C + 4;movlw 4 movwf A clrf A+1 movf B,W addwf A,F movf B+1,W A+1,F addwfc B,W movf addwf A,F B+1,W movf addwfc A+1,F C,W movf addwf A,F C+1,W movf addwfc A+1,F C,W movf addwf A,F movf C+1,W A+1,F addwfc C,W movf addwf A,F C+1,W movf A+1,F addwfc

3) Convert the following C code to assembler (traffic light controller: output green, yellow, red)

```
; unsigned char A, B;
А
      equ
              0
В
      equ
               1
; A = A + 1;
      incf
            A,F
; if (A > 2) A = 0;
             2
      movlw
      cpfsgt A
            L1
A
      goto
      clrf
L1:
; if(A == 0) B = 1;
      movlw 0
      cpfseq A
      goto L2
movlw 1
      movlw
             В
      movwf
L2:
; else if(A == 1) B = 2;
      movlw 1
      cpfseq A
            L3
2
      goto
      movlw
      movwf B
             L4
      goto
; else B = 4;
L3:
      movlw
              4
      movwf
              В
L5:
      nop
```

4) Convert the following C code in to assembler

```
; unsigned char A, B, C;
             0
А
     equ
В
     equ
             1
             2
С
     equ
; A = 0;
     clrf A
;while(A < 10) {
L1:
     movlw 10
     cpfslt A
     goto
          L2
; B = B + C;
             C,W
     movf
     addwf
             B,F
; A = A + 1;
     incf
          A,F
; }
     goto
          L1
L2:
     nop
```

5) The flow chart below turns your PIC into an electornic slot machine:

- Press RB0 to play RB0 is PORTB pin 0 (RB0 is the name for that pin in C code)
- If the number 5 comes up (1 in 8 chance), you win \$7. Otherwise you lose \$1

Write the corresponding assembler code.

	org	0x800	
	movlw movwf clrf clrf	0xFF TRISB TRISC TRISD	Start
	movlw movwf	0x0F ADCON1	PORTB = Input PORTC/D = Output
L1:	movlw movwf	100 PORTD	PORTD = 100 (Bank)
	btfss goto	PORTB,0 L1	yes
L2:	incf andlw movwf	PORTC,W 0x07 PORTC	RB0 = 0?
	btfsc goto	PORTB,0 L2	Count on PORTC mod 8
	movlw cpfseq goto	5 PORTC Lose	RB0 = 1?
Win:	movlw addwf goto	7 PORTD,F L1	
Lose:	decf goto	PORTD,F L1	PORTC = 5? yes Win PORTD += 7 Win \$7 Vin \$7 Vin \$7
			Problem #5

Slot Machine

6) The flow chart below turns your PIC into an electronic voting machine

- On reset, all votes are set to zero (Va = Vb = Vc = 0)
- When RB0 is pressed, one vote is counted for candidate A
- When RB1 is pressed, one vote is counted for candidate B
- When RB2 is pressed, one vote is counted for candidate C

Write the corresponding assembler code

Va Vb Vc	equ equ equ	0 1 2
	org	0x800
	movlw movwf clrf clrf clrf movlw movwf	0xFF TRISB Va Vb Vc 0x0F ADCON1
L1:	_	
	movlw cpfsgt goto	0 PORTB L1
	btfsc incf	PORTB,0 Va,F
	btfsc incf	PORTB,1 Vb,F
	btfsc incf	PORTB,2 Vc,F
L2:	-	0
	movlw cpfseq goto	0 PORTB L2

goto

L1

