ECE 376 - Homework \#3

Binary Inputs, Outputs, and Timing. Due Monday, January 31st
Please make the subject "ECE 376 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Assembler Coding

1) Determine the content of the W register and memory locations A and B after each operation:

Command	W	A	B
; Start	7	8	9
addwf B,F	7	8	16
incf A,W	9	8	16
subwf A,F	9	255	16
sublw 9	0	255	16
movlw 3	3	255	16
andwf A,F	3	3	16
iorwf B,W	19	3	16

Binary Inputs

Assume the resistance - votlage relationship for a thermistor is (T is temperature in Celsius)

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

2) Design a circuit that output

- 0 V for temperatures less than 35 C
- 5 V for temperatures more than 35 C

Assume a 1 k resistor in a voltage divider
At 35C:

- $\mathrm{R}=653 \mathrm{Ohms}$
- $\mathrm{Vx}=1.976 \mathrm{~V}$

When the temperature goes up...

- R goes down
- Vx goes down
- Vy goes up to +5 V

Connect to the minus input

3) Design a circuit with hysteresis that outputs

- 0 V when the temperature is less than 35 C
- 5 V when the temperature is more than 40 C
- No change (0 V or 5 V) for temperatures inbetween 35 C and 40 C

At 35C:

- $\mathrm{R}=653 \mathrm{Ohms}$
- $\mathrm{Vx}=1.976 \mathrm{~V}$
- $\mathrm{Vy}=0 \mathrm{~V}$

At 40C

- $\mathrm{R}=533.66 \mathrm{Ohms}$
- $\mathrm{Vx}=1.740 \mathrm{~V}$
- $\mathrm{Vy}=5 \mathrm{~V}$

As Vx goes down, Vy goes up. Connect to the minus input.
Vy becomes 5 V when Vx is 1.740 V . Make the offset 1.740 V
The gain needed is

$$
\text { gain }=\left(\frac{\text { change in } \mathrm{Vy}}{\text { change in } \mathrm{Vx}}\right)=\left(\frac{5 \mathrm{~V}-0 \mathrm{~V}}{1.976 \mathrm{~V}-1.740 \mathrm{~V}}\right)=21.17
$$

Binary Outputs

4) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off) and 20 mA (on). Assume the specifications for the LEDs are:

Color	Vf @ 20mA	mcd @ 20 mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

Since the PIC is driving a load that needs

- Less than 5 V and
- Less than 25 mA
a PIC can drive the load directly using only a resistor to limit the current:

$$
\begin{aligned}
& R_{r}=\left(\frac{5 V-2.0 V}{20 m A}\right)=150 \Omega \\
& R_{g}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega \\
& R_{b}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega
\end{aligned}
$$

5) Design a circuit which allows your PIC board to turn on and off a 1W LED. The specs for the LED are:

- $\mathrm{Vf}=3.2-3.6 \mathrm{~V}$
- Current $=350 \mathrm{~mA}$
- 100 Lumens (equivalent to a 10 W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823

In this case, you need a transistor since the current is more than a PIC can output. Assume a 6144 NPN transistor.

- $\beta=100$ worst case
- $V_{c e}(s a t)=0.2 \mathrm{~V}$

$$
R_{c}=\left(\frac{5 V-3.4 \mathrm{~V}}{350 \mathrm{~mA}}\right)=4.57 \Omega
$$

$$
I_{b}>\frac{I_{c}}{\beta}=\frac{350 \mathrm{~mA}}{100}=3.5 \mathrm{~mA}
$$

Let $\mathrm{Ib}=10 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{10 m A}\right)=430 \Omega
$$

Timing:

6) Write a program which outputs the music note D3\# (155.56 Hz)

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

The number of clocks per toggle (the timing for the wait loop) is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=32,141.939
$$

Come up with a wait loop that burns 32,141 clocks:

```
    N = 10*A*B + 5*A + 9 = 32,141
    A=13,B=247 results in N=32,184 (off by 0.131%)
#include <p18f4620.inc>
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
    org 0x800
    call Init
Loop:
    incf PORTC,F
    call Wait ; Play note D#2
    goto Loop
; --- Subroutines ---
Init:
    clrf TRISA
    clrf TRISB
    clrf TRISC
    clrf TRISD
    clrf TRISE
    movlw 0x0F
    movwf ADCON1 ; everyone is binary
    return
; Wait 32,141 clocks (actual wait = 32,184)
Wait:
    movlw 13 ; A
    movwf CNT1
W1:
        movlw 247 ; B
        movwf CNTO
W0:
            nop ; }10\mathrm{ clocks
            nop
            nop
            nop
            nop
            nop
            nop
            decfsz CNTO, F
            goto WO
        decfsz CNT1, F
        goto W1
    return
```


Lab:

7) Requirements:

- Inputs: Buttons on RB0 / RB1 / RB2 / RB3
- Outputs: RC0
- Relationship: Output a square wave on RC 0 based upon the button pressed:
- RB0: 261 Hz (C4)
- RB1: 293 Hz (D4)
- RB2: 329 Hz (E4)
- RB3: 349 Hz (F4)

8) Analysis, Code, and Flow Chart. Give computations for resistor values (if any), timing, assembler code, and a flow chart for your code

The number of clocks needed for each note are:

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

N is created using a series of loops:

$$
\mathrm{N}=100 \mathrm{AB}+5 \mathrm{~B}+5
$$

261Hz:

- $\mathrm{N}=19,157$
- $\mathrm{A}=100, \mathrm{~B}=19$

293 Hz :

- $\mathrm{N}=17,026$
- $\mathrm{A}=100, \mathrm{~B}=17$

329 Hz

- $\mathrm{N}=15,167$
- $\mathrm{A}=100, \mathrm{~B}=15$

349 Hz

- $\mathrm{N}=14,317$
- $\mathrm{A}=100, \mathrm{~B}=14$

```
; --- Piano4.asm ----
; When you press button RB0..RB3, you play a note
; on RC0:
; RB0: 291 Hz (C4)
    RB1: 293 Hz (D4)
    RB2: 329 Hz (E4)
    RB3: 349 Hz (F4)
#include <p18f4620.inc>
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
    org 0x800
    call Init
Loop:
            movlw 0
            cpfseq PORTB ; if any button is pressed
    btg PORTC,0
    btfsc PORTB,0
        call C4
    btfsc PORTB,1
        call D4
    btfsc PORTB,2
    call E4
    btfsc PORTB,3
    call F4
    goto Loop
; --- Subroutines ---
Init:
    clrf TRISA ;PORTA is output
        movlw 0xFF
    movwf TRISB ;PORTB is input
    clrf TRISC ;PORTC is output
    clrf TRISD ;PORTD is output
    clrf TRISE ;PORTE is output
    movlw 15
    movwf ADCON1 ;everyone is binary
    return
C4: ; 261Hz = 19,157 clocks
    movlw 19
    movwf CNT1
C4a:
    movlw 100
    movwf CNTO
C4b:
    nop
    nop
    nop
    nop
    nop
    nop
    nop
    decfsz CNTO, F
    goto C4b
    decfsz CNT1, F
    goto C4a
    return
```

8) Validation: Collect data in the lab to verify your code works.

- For a binary clock, is it counting once per second?
- For the dice, are the results random? Is the beep 220 Hz ? Is it 1 second?
- For the piano, is each note correct in frequency?

9) Demonstration: Demonstrate that your embedded system works (either in person or with a video)
