ECE 376 - Homework \#4

C Programming and LCD Displays. Due Monday, February 14th

Please make the subject "ECE 376 HW\#4" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine how many clocks the following C code takes to execute

- Compile and download the code (modify working code and replace the main loop)
- Measure the frequency you see on RC0 (toggles every loop).
- Use an osiclloscope - or -
- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app like Piano Tuner
- RC 1 is $1 / 2$ the frequency of $\mathrm{RC} 0, \mathrm{RC} 2$ is $1 / 4$ th, $\mathrm{RC} 3=1 / 8$ th, etc
- The number of clocks it takes to execute each loop is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

1a) Counting mod 32

- note: if using your cell phone to measure the frequency, you might have to try different pins on PORTC until you get one in the audio range. Each pin is $1 / 2$ the frequency of the previous pin

```
unsigned char i
while(1) {
        i = (i + 1) % 32;
        if(i == 0) PORTC += 1;
        }
```

$\mathrm{RC} 3=1222.5 \mathrm{~Hz}$

- $\mathrm{RC} 0=8 \times \mathrm{RC} 3=9780 \mathrm{~Hz}$
$N=\left(\frac{10,000,000}{2 \cdot 9780 \mathrm{~Hz}}\right) \cdot\left(\frac{1}{32}\right)=15.97$ clocks
It takes 16 clocks to count mod 32

1b) Counting mod 33

```
unsigned char i
while(1) {
    i = (i + 1)% 33;
    if(i == 0) PORTC += 1;
    }
```

$\mathrm{RC} 0=268.4 \mathrm{~Hz}$

$$
N=\left(\frac{10,000,000}{2 \cdot 268.4 H z}\right) \cdot\left(\frac{1}{33}\right)=564.5 \text { clocks }
$$

It takes 564 clocks to count mod 33

1c) Long Integer Addition

```
unsigned long int A, B, C;
unsigned char i;
A = 0x12345678;
B = 0;
while(1) {
    i = (i + 1)% 32;
    if (i == 0) PORTC += 1;
    B = B + A;
    }
```

$\mathrm{RC} 0=3193.6 \mathrm{~Hz}$

$$
N=\left(\frac{10,000,000}{2 \cdot 3193.6 \mathrm{~Hz}}\right) \cdot\left(\frac{1}{32}\right)=48.92 \approx 49 \text { clocks }
$$

subtract 16 (the time to count mod 32) and you get 33 clocks
A long integer addition takes 49 clocks to execute

1d) Floating point addition

```
float A, B;
A = 3.14159265379;
B = 0;
while(1) {
    i = (i + 1) % 32;
    if(i == 0) PORTC += 1;
    B = B + A;
    }
```

$\mathrm{RC} 0=154.3 \mathrm{~Hz}$

$$
N=\left(\frac{10,000,000}{2 \cdot 154.3 \mathrm{~Hz}}\right) \cdot\left(\frac{1}{32}\right)=1012.6 \text { clocks }
$$

subtract 16 clocks (the time to count mod 32) and you get 996.6 clocks
It takes 996.6 clocks to add a floating point number

\$65 Egg Timer

2) Write a C program which turns your PIC into an egg timer with a resolution of 100 ms

- TIME is displayed on the LCD display as XXX.X seconds
- On reset, TIME = 0000.0
- When RB0 is pressed, TIME is set to 5.0 seconds
- When RB1 is pressed, TIME is set to 10.0 seconds
- When TIME >0, PORTC $=0 x F F$. When TIME $==0$, PORTC $=0 x 00$.
- Every 100 ms , TIME is decremented by 0.1 second and displayed, stopping at zero

Partial Code:

```
LCD_Init(); // initialize the LCD
SEC = 0;
LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
Wait_ms(70);
TIME = 0;
while(1) {
    if(RB0) TIME = 50;
    if(RB1) TIME = 100;
    LCD_Move(1,0); LCD_Out(TIME, 3, 1);
    RA1 = 1;
    Wait_ms(85);
    RA1 = 0;
    if(TIME) TIME -= 1;
    }
```

3) How many lines of assembler does your code compile into?

The compiled code takes up 2308 bytes of ROM

- Each instruction takes 2 bytes
- 1154 lines of assembler

Memory Summary:
Program spa
Data space EEPROM space
ID Location space
Configuration bits
used
used
used
used
used
$904 h$
29 h
0 l
0
0 h
0

4) Collect data to determine how accurate your program is (one count $=100 \mathrm{~ms}$ ideally)

Measure the signal on RA1 (the reason for those lines of code)

- Period $=100 \mathrm{~ms}$
- Wait routine takes 85 ms (when RA1 = 1)
- The rest of the code takes 15 ms (when RA1 $=0$)

PIC Banjo

5) Requirements: Specify the inputs / outputs / how they relate.

Inputs: Buttone RB0 .. RB3
Outputs: RC0

Relationship

Play the following notes when a button is pressed

- RB0: C4 (261.63 Hz)
- RB1: G4 $(392.00 \mathrm{~Hz})$
- RB2: B3 (246.94 Hz)
- RB3: D4 (293.66Hz)

Tolerance: +/- 1\%
6) C code, flow chart, and resulting number of lines of assembler To generate a note, the following test code was used

```
void main(void)
{
    unsigned int i;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    TRISE = 0;
    ADCON1 = 0x0F;
    while(1) {
        if(RB0) {
            RCO = !RCO;
            for(i=0; i<1000; i++);
            }
        }
    }
```

The results was a 312.2 Hz square wave.

