
ECE 376 - Homework #4
C Programming and LCD Displays. Due Monday, February 14th

Please make the subject "ECE 376 HW#4" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app

like Piano Tuner

- RC1 is 1/2 the frequency of RC0, RC2 is 1/4th, RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =



10,000,000

2⋅Hz




1a) Counting mod 32

- note: if using your cell phone to measure the frequency, you might have to try different pins on

PORTC until you get one in the audio range. Each pin is 1/2 the frequency of the previous pin

unsigned char i
while(1) {
 i = (i + 1) % 32;
 if(i == 0) PORTC += 1;
 }

RC3 = 1222.5Hz

RC0 = 8 x RC3 = 9780Hz

 clocksN =



10,000,000

2⋅9780Hz


 ⋅




1

32

 = 15.97

It takes 16 clocks to count mod 32

1b) Counting mod 33

unsigned char i
while(1) {
 i = (i + 1)% 33;
 if(i == 0) PORTC += 1;
 }

RC0 = 268.4Hz

 clocksN =



10,000,000

2⋅268.4Hz


 ⋅




1

33

 = 564.5

It takes 564 clocks to count mod 33

1c) Long Integer Addition

 unsigned long int A, B, C;
 unsigned char i;

A = 0x12345678;
B = 0;
while(1) {

 i = (i + 1)% 32;
 if (i == 0) PORTC += 1;
 B = B + A;
 }

RC0 = 3193.6Hz

 clocksN =



10,000,000

2⋅3193.6Hz


 ⋅




1

32

 = 48.92 ≈ 49

subtract 16 (the time to count mod 32) and you get 33 clocks

A long integer addition takes 49 clocks to execute

1d) Floating point addition

float A, B;
A = 3.14159265379;
B = 0;
while(1) {

 i = (i + 1)% 32;
 if(i == 0) PORTC += 1;
 B = B + A;
 }

RC0 = 154.3Hz

 clocksN =



10,000,000

2⋅154.3Hz


 ⋅




1

32

 = 1012.6

subtract 16 clocks (the time to count mod 32) and you get 996.6 clocks

It takes 996.6 clocks to add a floating point number

$65 Egg Timer

2) Write a C program which turns your PIC into an egg timer with a resolution of 100ms

TIME is displayed on the LCD display as XXX.X seconds

On reset, TIME = 0000.0

When RB0 is pressed, TIME is set to 5.0 seconds

When RB1 is pressed, TIME is set to 10.0 seconds

When TIME > 0, PORTC = 0xFF. When TIME == 0, PORTC = 0x00.

Every 100ms, TIME is decremented by 0.1 second and displayed, stopping at zero

Partial Code:

 LCD_Init(); // initialize the LCD

 SEC = 0;

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 Wait_ms(70);

 TIME = 0;

 while(1) {
 if(RB0) TIME = 50;
 if(RB1) TIME = 100;

 LCD_Move(1,0); LCD_Out(TIME, 3, 1);
 RA1 = 1;
 Wait_ms(85);
 RA1 = 0;
 if(TIME) TIME -= 1;
 }

3) How many lines of assembler does your code compile into?

The compiled code takes up 2308 bytes of ROM

Each instruction takes 2 bytes

1154 lines of assembler

Memory Summary:

 Program space used 904h (2308) of 10000h bytes (3.5%)

 Data space used 29h (41) of F80h bytes (1.0%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

4) Collect data to determine how accurate your program is (one count = 100ms ideally)

Measure the signal on RA1 (the reason for those lines of code)

Period = 100ms

Wait routine takes 85ms (when RA1 = 1)

The rest of the code takes 15ms (when RA1 = 0)

PIC Banjo

5) Requirements: Specify the inputs / outputs / how they relate.

Inputs: Buttone RB0 .. RB3

Outputs: RC0

Relationship

Play the following notes when a button is pressed

RB0: C4 (261.63Hz)

RB1: G4 (392.00Hz)

RB2: B3 (246.94Hz)

RB3: D4 (293.66Hz)

Tolerance: +/- 1%

6) C code, flow chart, and resulting number of lines of assembler

To generate a note, the following test code was used

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 while(1) {
 if(RB0) {
 RC0 = !RC0;
 for(i=0; i<1000; i++);
 }
 }
 }

The results was a 312.2Hz square wave.

