ECE 376 - Homework \#8

Timer 2 Interrupts. Due Monday, March 28th

Measuring Time to 0.1 ms with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 0.1 ms (repeat homework \#4 but now with interrupts)

- Time is measured to 0.1 ms using Timer2 interrupts
- Each interrupt, pin RC0 is toggled (outputting a 5 kHz square wave on RC 0)
- Each interrupt (every 0.1 ms), TIME is decremented to zero, stopping at zero
- TIME is displayed on the LCD display to 1 ms : $\mathrm{xx} . \mathrm{xxxx}$
- When you press RB0, the time is reset to 5.0000 seconds
- When you press RB1, the time is reset to 10.0000 seconds
- When you press RB2, the time is reset to 15.0000 seconds
- When you press RB3, the time is reset to 20.0000 seconds

Check the accuracy of your stopwatch

- Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter works)

Code:
< insert code and flow chart >

Compilation Results:

```
Memory Summary:
    Program space
    Data space
    EEPROM space
    ID Location space
Configuration bits
lused
AOOh (2602) of 10000h bytes
    33h (51) of F80h bytes (1.3%)
    Oh ( 0) of 400h bytes (0.0%)
    Oh ( 0) of 8h nibbles
0.0%)
used
used
used
used
used
\begin{tabular}{rrrr} 
A00h & \((2602)\) of & \(10000 h\) bytes \\
\(33 h\) & \((51)\) & of & F80h bytes \\
\(0 h\) & \((0)\) & of & \(400 h\) bytes \\
\(0 h\) & \((0)\) & of & \(8 h\) nibbles \\
\(0 h\) & \((\) & \(0)\) & of
\end{tabular}
\(\left.\begin{array}{l}\left(\begin{array}{l}4.0 \% \\ ( \\ ( \\ ( \end{array} 0.3 \%\right) \\ ( \\ (0.0 \%) \\ ( \end{array} 0.0 \%\right)\)
```

Frequency on RA1: 5003.0 Hz

- verifies that timer2 is running every 100us
- (99.940us measured)

III

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

- Play note D3\# $(155.56 \mathrm{~Hz})$ on pin RC0 when button RB0 is pressed
- Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

$$
N=A B C=\left(\frac{10,000,000}{2 \cdot H z}\right)=32,141.939
$$

Let

- $\mathrm{A}=8$
- $\mathrm{B}=251$
- $\mathrm{C}=16$

$$
N=A B C=32,128(0.043 \% \text { low })
$$

To do this

7	6	5	4	3	2	1	0				
0	0	1	1	1	1	1	1				
	$\mathrm{~A}=8$								T2E	$\mathrm{C}=16$	

- $\mathrm{T} 2 \mathrm{CON}=0 \times 3 \mathrm{~F}$
- $\mathrm{PR} 2=250$

Result:

- $\mathrm{f}=155.6 \mathrm{~Hz}$

Code:

```
// Problem #2
// 123.47Hz
// Global Variables
const unsigned char MSGO[21] = "155.56Hz
const unsigned char MSG1[21] = "
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// High-priority service
void interrupt IntServe(void)
{
    if (TMR2IF) {
        if(RB0) RC1 = !RC1;
        TMR2IF = 0;
        }
```

```
    }
// Main Routine
void main(void)
{
    unsigned char i;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    TRISE = 0;
    ADCON1 = 0x0F;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
// set up Timer2 155.56Hz
    T2CON = 0x3F;
    PR2 = 250;
    TMR2ON = 1;
    TMR2IE = 1;
    TMR2IP = 1;
    PEIE = 1;
// turn on all interrupts
    GIE = 1;
    i = 0;
    while(1) {
        i = i + 1;
        LCD_Move(1,0); LCD_Out(i, 3, 0);
        Wait_ms(250);
        }
    }
```


Steppper Motor Roulette Wheel

3) Requirements: Explain what the inputs are / what the outputs are / and how they relate. Also explain how Timer2 interrupts will be used in your embedded system.

Input:

- RB0

Output:

- Stepper Motor (on PORTA)
- LCD Display (on PORTD)

Relationship:

- To start the game, press and release RB0.
- This generates a random number from $0 . .7$
- The stepper motor then turns 3 rotations plus $25^{*} \mathrm{~N}$ steps at a rate of $10 \mathrm{~ms} / \mathrm{step}$ (set by Timer2)
- The number (0..7) is also displayed on the LCD display as the stepper motor turns

Calculations:

$10 \mathrm{~ms} /$ step is too large for Timer2 directly. So, a counter is added so that the stepper motor turns every 10th interrupt

- Timer2: 1ms
- $\mathrm{A}=10$
- $B=250$
- $\mathrm{C}=4$
- Toggle RD0 every interrupt (results in 500 Hz square wave on RD0)
- 10 th interrupt $=10 \mathrm{~ms}$
- Step the motor every 10 ms

4) C-Code and flow chart.
< insert code >

5) Data. Your raw data (at least two data points)

Timer2 Interrupt

- 499.0 Hz

Winning Numbers

- $1,6,3,0,1,5,0,3,7,5,6,0,5$

6) Statistical Analysis: Analyze your data to determine

- The 90% confidence interval, or
- Who in your group can jump the highest (with what probability level), or
- Something else (your pick - just use some statistics to anlayze your data)

With only 14 numbers, there isn't enough data to do a chi-squared test with 8 bins, so use two bins

bin	p	np	N	chi-squared
even	0.5	7	8	$1 / 7$
odd	0.5	7	6	$1 / 7$
$\quad$$\|c\|$		Total	$2 / 7$	

From StatTrek, with 1 degree of freedom, this corresponds to a probability of 0.41
I am 41% certain this is not a fair die
Using a different grouping:

bin	p	np	N	chi-squared
$0 . .3$	0.5	7	7	$0 / 7$
$4 . .7$	0.5	7	7	$0 / 7$

I am 0% certain this is not a fair die

Using yet another grouping:

bin	p	np	N	chi-squared
0 or 5	$2 / 8$	3.5	6	1.786
other	$6 / 8$	10.5	11	0.595
	Total			2.381

From a chi-squared table with 1 degree of freedom, this corresponds to a probability of 0.88
I am $\mathbf{8 8 \%}$ certain this is not a fair die
7) Demo (in person during Zoom office hours or in a video)

