
ECE 376 - Homework #8
Timer 2 Interrupts. Due Monday, March 28th

Measuring Time to 0.1ms with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 0.1ms (repeat homework #4 but now with

interrupts)

Time is measured to 0.1ms using Timer2 interrupts

Each interrupt, pin RC0 is toggled (outputting a 5kHz square wave on RC0)

Each interrupt (every 0.1ms), TIME is decremented to zero, stopping at zero

TIME is displayed on the LCD display to 1ms: xx.xxxx

When you press RB0, the time is reset to 5.0000 seconds

When you press RB1, the time is reset to 10.0000 seconds

When you press RB2, the time is reset to 15.0000 seconds

When you press RB3, the time is reset to 20.0000 seconds

Check the accuracy of your stopwatch

Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter

works)

Code:

< insert code and flow chart >

Compilation Results:

Memory Summary:
 Program space used A00h (2602) of 10000h bytes (4.0%)
 Data space used 33h (51) of F80h bytes (1.3%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

Frequency on RA1: 5003.0 Hz

verifies that timer2 is running every 100us

(99.940us measured)

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

Play note D3# (155.56Hz) on pin RC0 when button RB0 is pressed

Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

N = ABC =

10,000,000

2⋅Hz

 = 32, 141.939

Let

A = 8

B = 251

C = 16

 (0.043% low)N = ABC = 32, 128

To do this

T2CON

7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 1

A = 8 T2E C = 16

T2CON = 0x3F

PR2 = 250

Result:

f = 155.6Hz

Code:

// Problem #2
// 123.47Hz

// Global Variables

const unsigned char MSG0[21] = "155.56Hz ";
const unsigned char MSG1[21] = " ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 if(RB0) RC1 = !RC1;
 TMR2IF = 0;
 }

 }

// Main Routine

void main(void)
{
 unsigned char i;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init(); // initialize the LCD

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);

// set up Timer2 155.56Hz
 T2CON = 0x3F;
 PR2 = 250;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;
 i = 0;

 while(1) {
 i = i + 1;
 LCD_Move(1,0); LCD_Out(i, 3, 0);
 Wait_ms(250);
 }
 }

Steppper Motor Roulette Wheel

3) Requirements: Explain what the inputs are / what the outputs are / and how they relate. Also

explain how Timer2 interrupts will be used in your embedded system.

Input:

RB0

Output:

Stepper Motor (on PORTA)

LCD Display (on PORTD)

Relationship:

To start the game, press and release RB0.

This generates a random number from 0..7

The stepper motor then turns 3 rotations plus 25*N steps at a rate of 10ms/step (set by Timer2)

The number (0..7) is also displayed on the LCD display as the stepper motor turns

Calculations:

10ms/step is too large for Timer2 directly. So, a counter is added so that the stepper motor turns every

10th interrupt

Timer2: 1ms

- A = 10

- B = 250

- C = 4

- Toggle RD0 every interrupt (results in 500Hz square wave on RD0)

10th interrupt = 10ms

- Step the motor every 10ms

4) C-Code and flow chart.

< insert code >

5) Data. Your raw data (at least two data points)

Timer2 Interrupt

499.0Hz

Winning Numbers

1, 6, 3, 0, 1, 5, 0, 3, 7, 5, 6, 0, 5

6) Statistical Analysis: Analyze your data to determine

The 90% confidence interval, or

Who in your group can jump the highest (with what probability level), or

Something else (your pick - just use some statistics to anlayze your data)

With only 14 numbers, there isn't enough data to do a chi-squared test with 8 bins, so use two bins

bin p np N chi-squared

even 0.5 7 8 1/7

odd 0.5 7 6 1/7

Total 2/7

From StatTrek, with 1 degree of freedom, this corresponds to a probability of 0.41

I am 41% certain this is not a fair die

Using a different grouping:

bin p np N chi-squared

0..3 0.5 7 7 0/7

4..7 0.5 7 7 0/7

Total 0/7

I am 0% certain this is not a fair die

Using yet another grouping:

bin p np N chi-squared

0 or 5 2/8 3.5 6 1.786

other 6/8 10.5 11 0.595

Total 2.381

From a chi-squared table with 1 degree of freedom, this corresponds to a probability of 0.88

I am 88% certain this is not a fair die

7) Demo (in person during Zoom office hours or in a video)

