ECE 376 - Homework #10

ITimerl Capture - Timerl Compare.

Timer1 Capture: Capacitor Meter
Problem 1-5) Use Timerl Capture to measure time to 1 clock (100ns).

1) Requirements:

+ Measure the period of a 555 timer with a resolution of 100ns (Timerl Capture).
From this, compute the value of C

Hardware: Output a square wave using a 555 timer

+5V
+5V
R1 8 4
Vce Reset
Vi 7 3 V3
Discharge Output ——
R2
V2 6
c ; Threshold
Trigger

1 I

period =(R; +2R>) - C-In(2)
R1 =1k

R2 =3.3k

C = 1uF (varies)

2) C code and flow chart:

Computations

e (

With T measured to 100ns

T

(R1+2R»)In(2)

N=10'T

C=1898-10"°N

C=18.98N
If you capture every 256th rising edge

e

18.98
256

C-Code and flow chart.

< insert code >

) =0.0001898T

Farads

pF

)N: 0.07379N pF

< one flow chart for the main routine, one for each interrupt >

3) Test: Collect data in lab to verify that your interrupts are working properly.

Toggle RA1 every Timerl interrupt (216 clocks).

« Expected period = 2 * 65,536 = 131,072 clocks
Measured period = 13.1063808ms = 131,063 clocks

Measure a 2ms square wave (555 timer with 0.36uF)

Measured period = 1.7807872ms
+ Calculated period = 1.8960ms

4) Validation: Collect data to validate your design works.

C T uF (meas) C Error
(ms) Lovum multimeter
10uF 42.6246ms 8.036608 uF 10.20uF -21.21 %
1uF 5.124096 ms 0.968528 uF 1.059 uF -8.54%
0.18uF 0.8742656 ms 0.165136 uF 0.1785 uF -7.49%
0.1uF 0.5922362 ms 0.112130 uF 0.1038 uF +8.02%
0.015uF 0.0775216 ms 0.014638 uF 0.01530 uF -5.33%

note: both readings might be correct. C is specified at 1kHz. Our meter uses 23Hz - 13kHz.

5) Demo

T: _881.3113647
uF: _BEE, 2676452

Timer1 Compare:

Can you detect a 1% change in frequency at 440Hz?

6) Requirements: Press RBO to start.

- The PIC flips a coin (head or tails)

+ The PIC will then play 440Hz for 500ms

+ Then pause 100ms

« Then play either 440Hz or 444.44Hz for 500ms, depending upon the coin toss (random).

The operator then must press a button

« RBO if the notes sound like they're the same
- RBI if the notes sound like they're different

The PIC then records whether you were correct or not, displays the running total on the LCD, the
repeats.

7) C-Code and flow chart.

< insert code here >

< one flow chart for the main routine and each interrupt >

Interrupt Service Routine

void interrupt IntServe (void)
{
if (TMR1IF) {
TIME = TIME + 0x10000;

TMR1IF = 0;
}
if (CCP1lIF) {
if (PLAY) RCO = !RCO;
else RCO = 0;
CCPR1 += N;

CCP1IF = 0;
}

8) Test: Collect data in lab to verify that your interrupts are working properly.

Test Code: Play 440.0Hz

while (1
N =

) A
11354; // 440Hz
PLAY = 1;

Resulting frequency = 441.0Hz

Test Code: Play 444.44Hz

while (1
N:

) A
11251; // 444.44Hz
PLAY = 1;

}
Resluting frequency = 445.0Hz

Test Code: Random number generator

while (1) {
while (RBO) ;
while (!RBO) ;
DIE = TMR1 & 1;
LCD_Move (0,0); LCD_Write(DIE + 48);

Result
00100000111010110001010100010101111110100111110011101
« 250's
« 281's

9) Validation: Collect data to validate your design works.

18 tests
Correct 15 times
Incorrect 3 times

From StatTrek, a chi-scored critical value of 8.00 with 1 degree of freedom corresponds to a probability

of 0.995

I can be 99.5% certain that I can hear a 1% difference in frequency at 440Hz (i.e. I'm not

guessing)

10) Demo

Guess P np N chi-squared
correct 0.5 9 15 4.00
incorrect 0.5 9 3 4.00
Total 8.00

