ECE 376 - Homework \#11

z-Transforms and Digital Filters. Due Wednesday, April 20th

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{10(s+3)}{(s+2)(s+7)}\right) X
$$

a) What is the differential equation relating X and Y ?
cross multiply

$$
\left(s^{2}+9 s+14\right) Y=(10 s+30) X
$$

'sy' means 'the derivative of Y

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+14 y=10 \frac{d x}{d t}+30 x \\
& y^{\prime \prime}+9 y^{\prime}+14 y=10 x^{\prime}+30 x
\end{aligned}
$$

b) Find $y(t)$ assuming

$$
x(t)=2+4 \sin (5 t)
$$

Use superposition treating this as two separate problems (one at each frequency)
(i) $\quad x(t)=2$
$s=0$
$Y=\left(\frac{10(s+3)}{(s+2)(s+7)}\right)_{s=0}$
$Y=4.286$
(ii) $\quad x(t)=4 \sin (5 t)$

$$
\begin{aligned}
& X=0-j 4 \quad \text { real }=\text { cosine, imag }=- \text { sine } \\
& s=j 5 \\
& Y=\left(\frac{10(s+3)}{(s+2)(s+7)}\right)_{s=j 5} \cdot(0-j 4) \\
& Y=-3.541-j 3.579 \\
& y(t)=-3.541 \cos (5 t)+3.579 \sin (5 t)
\end{aligned}
$$

The total answer is then $D C+A C$

$$
y(t)=4.286-3.541 \cos (5 t)+3.579 \sin (5 t)
$$

2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.01(z+1)}{(z-0.98)(z-0.92)}\right) X
$$

a) What is the difference equation relating X and Y ? cross multiply and multipy out

$$
\left(z^{2}-1.9 z+0.9016\right) Y=0.01(z+1) X
$$

'zY' means 'y(k+1)' or 'the next value of y '

$$
y(k+2)-1.9 y(k+1)+0.9016 y(k)=0.01(x(k+1)+x(k))
$$

with a change in variable, you could also write this as (either is correct)

$$
y(k)-1.9 y(k-1)+0.9016 y(k-2)=0.01(x(k-1)+x(k-2))
$$

b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=2+4 \sin (5 t)
$$

Use superposition and treat this as two separate problems
i) $\quad x(t)=2$
$s=0$
$z=e^{s T}=1$
$Y=\left(\frac{0.01(z+1)}{(z-0.98)(z-0.92)}\right)_{z=1} \cdot(2)=25$
ii) $\quad x(t)=4 \sin (5 t)$

$$
\begin{aligned}
& X=0-j 4 \quad \text { real }=\text { cosine, imag }=- \text { sine } \\
& s=j 5 \\
& z=e^{s T}=1 \angle 0.05 \mathrm{rad}=1 \angle 2.86^{0} \\
& Y=\left(\frac{0.01(z+1)}{(z-0.98)(z-0.92)}\right)_{z=1 \angle 2.86^{0}} \cdot(0-j 4)=-15.799+j 2.901 \\
& y(t)=-15.799 \cos (5 t)-2.901 \sin (5 t)
\end{aligned}
$$

The total answer is $D C+A C$

$$
y(t)=25-15.799 \cos (5 t)-2.901 \sin (5 t)
$$

Problem 3) Assume $G(s)$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{90}{(s+2)(s+4)(s+10)}\right)
$$

Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $T=0.01$ second.

$$
\begin{array}{ll}
s=-2 & z=e^{s T}=0.9802 \\
s=-4 & z=e^{s T}=0.9608 \\
s=-10 & z=e^{s T}=0.9048
\end{array}
$$

The form of $G(z)$ is then

$$
G(z)=\left(\frac{k}{(z-0.9802)(z-0.9608)(z-0.9048)}\right)
$$

To find k , match the DC gain

$$
\begin{aligned}
& \left(\frac{90}{(s+2)(s+4)(s+10)}\right)_{s=0}=1.25 \\
& \left(\frac{k}{(z-0.9802)(z-0.9608)(z-0.9048)}\right)_{z=1}=1.25 \\
& k=0.000092358
\end{aligned}
$$

so

$$
G(z)=\left(\frac{9.2358 \cdot 10^{-5}}{(z-0.9802)(z-0.9608)(z-0.9048)}\right)
$$

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
In Matlab

```
>> T = 0.01;
>> w = [0:0.01:30]';
>> s = j*W;
>> z = exp(s*T);
>>
>>Gs = 90./ ( (s+2).*(s+4).* (s+10) );
>>
>> % z-plane
>> pl = exp (-2*T)
p1 = 0.9802
>> p2 = exp (-4*T)
p2 = 0.9608
>> p3 = exp(-10*T)
p3 = 0.9048
>> Gz = 1 ./ ( (z-p1).*(z-p2).*(z-p3) );
```

```
>> max(abs(Gs))
ans = 1.1250
>> max(abs(Gz))
ans = 1.3534e+004
>> k = max(abs(Gs)) / max(abs(Gz))
k = 8.3122e-005
>> Gz = k ./ ( (z-p1).*(z-p2).*(z-p3) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


Problem 4) Assume $\mathrm{G}(\mathrm{s})$ is the following band-pass filter:

$$
G(s)=\left(\frac{6 s}{(s+1+j 16)(s+1-j 16)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.
zero

$$
s=0 \quad z=e^{s T}=1
$$

poles

$$
\begin{array}{ll}
s=-1+j 16 & z=e^{s T}=0.9774+j 0.1577 \\
s=-1-j 16 & z=e^{s T}=0.9744-j 0.1577
\end{array}
$$

meaning

$$
G(z)=\left(\frac{k(z-1)}{(z-0.9744+j 0.1577)(z-0.9744-j 0.1577)}\right)
$$

To find k, match the maximum gain vs. frequency (from Matlab)

$$
G(z)=\left(\frac{0.0099(z-1)}{(z-0.9744+j 0.1577)(z-0.9744-j 0.1577)}\right)
$$

In Matlab

```
>> T = 0.01;
>> z1 = exp(0*T)
z1 = 1
>> p1 = exp((-1+j*16)*T)
p1 = 0.9774 + 0.1577i
>> p2 = exp((-1-j*16)*T)
p2 = 0.9774 - 0.1577i
>> w = [0:0.01:30]';
>> s = j*w;
>> z = exp(s*T);
>>
>> Gs = 6*s./ ( (s+1+j*16).*(s+1-j*16) );
>> Gz = 6*(z-z1) ./ ( (z-p1).*(z-p2) );
>> k = max(abs(Gs)) / max(abs(Gz))
k = 0.0099
>> Gz = k * 6*(z-z1) ./ ( (z-p1).*(z-p2) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
```

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

Problem 5) Write a C program to implement the digital filter, $\mathrm{G}(\mathrm{z})$

$$
G(z)=\left(\frac{0.0099(z-1)}{(z-0.9744+j 0.1577)(z-0.9744-j 0.1577)}\right)
$$

multiply out

$$
\begin{aligned}
& \text { >> poly }([\mathrm{p} 1, \mathrm{p} 2]) \\
& \text { ans }=1.0000-1.9548 \quad 0.9802 \\
& \qquad G(z)=\left(\frac{0.0099(z-1)}{\left(z^{2}-1.9548 x+0.9802\right)}\right)
\end{aligned}
$$

In C:

```
while(1) {
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0;
    y0 = 1.9548*y1 - 0.9802*y2 + 0.0099*(x1 - x2);
    D2A(y0);
    Wait_ms(10);
    }
```

