ECE 376-Test \#1: Name

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted). February 4, 2022

1) Digital Inputs. Design a circuit which outputs

- $0 V$ when $\mathrm{R}<1200$ Ohms
- 5 V when $\mathrm{R}>1400$ Ohms

Assume

- $\mathrm{R} 1=900+100^{*}$ (your birth month) + (your birth date).
- May 14th, for example, gives R1 = 1414 Ohms
$\mathrm{R}=1200 \quad(\mathrm{~V} 2=0 \mathrm{~V})$
$V_{1}=\left(\frac{1200}{1200+1414}\right) 5 V=2.295 \mathrm{~V}$
$\mathrm{R}=1400(\mathrm{~V} 2=5 \mathrm{~V})$
$V_{1}=\left(\frac{1400}{1400+1414}\right) 5 V=2.488 \mathrm{~V}$
V2 goes up as V1 goes up. Connect to the plus input
V 2 is set when V1 $=2.488 \mathrm{~V}$. Make the offset 2.488 V
The gain needed is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{5 \mathrm{~V}-0 \mathrm{~V}}{2.488 \mathrm{~V}-2.295 \mathrm{~V}}\right)=26.01
$$

2a) Digital Outputs: Design a circuit which allows your PIC to drive a 10W LED at N mcd

- $\mathrm{N}=900+100^{*}($ your birth month $)+$ (your birth date)
- $\mathrm{N}=1414 \mathrm{mcd}$ for May 14th, for example

Assume a 1W LED has the following characteristics

- Vf=3.2V @ 350mA
- 5,000mcd @ 350mA

Assume a 6144 NPN transistor

- $\mathrm{Vbe}=700 \mathrm{mV}$
- Vce(sat) $=360 \mathrm{mV}$
- Current gain $=\beta=200$

N mcd $900+100 *$ Month + Day	Ic (mA) current needed to produce N mcd	Rb	Rc
1414 mA	98.98 mA	1 k Ohms $172<\mathrm{Rb}<8690$	65.1 Ohms

$I_{c}=\left(\frac{1414 m c d}{5000 m c d}\right) 350 m A=98.98 m A$
$R_{c}=\left(\frac{10 V-3.2 V-0.36 \mathrm{~V}}{98.98 \mathrm{~mA}}\right)=65.1 \Omega$
$\left(\frac{I_{c}}{200}\right)=0.495 m A<I_{b}<25 m A$
$8.69 k \Omega>R_{b}>172 \Omega$

3) Assembler: Determine the contents of the W, PORTB, and PORTC registers after each operation. Assume

- PORTB and PORTC are output.
- Default is decimal

	W	PORTB	PORTC
Start:	0	Birth Month (1..12) 5	Birth Date (1..31) 14
incf PORTB,W	6	5	14
decf PORTC,F	6	5	13
movlw 7	7	5	13
addwf PORTB,F	7	12	13
subwf PORTC, W	6	12	13
movlw 7	$\begin{gathered} 7 \\ 00000111 \end{gathered}$	$\begin{gathered} 12 \\ 00001100 \end{gathered}$	$\begin{gathered} 13 \\ 00001101 \end{gathered}$
andwf PORTB,F	$\begin{gathered} 7 \\ 00000111 \end{gathered}$	$\begin{gathered} 4 \\ 00000100 \end{gathered}$	$\begin{gathered} 13 \\ 00001101 \end{gathered}$
iorwf PORTC,W	$\begin{gathered} 15 \\ 00001111 \end{gathered}$	$\begin{gathered} 4 \\ 00000100 \end{gathered}$	$\begin{gathered} 13 \\ 00001101 \end{gathered}$
negf PORTB,F	$\begin{gathered} 15 \\ 00001111 \end{gathered}$	$\begin{gathered} 252(-4) \\ 11111100 \end{gathered}$	$\begin{gathered} 13 \\ 00001101 \end{gathered}$
comf PORTC,F	$\begin{gathered} 15 \\ 00001111 \end{gathered}$	$\begin{gathered} 252(-4) \\ 11111100 \end{gathered}$	$\begin{gathered} 242(-14) \\ 11110010 \end{gathered}$

4) Assembler \& Timing:

a) Determine the number of clocks the following assembler subroutine takes to execute.

- Assume MONTH and DAY be your birth month and day.
b) Modify this routine (change A, B, and C) so that it takes $35,000,000$ clocks (3.5 seconds) to execute
- +/- 50,000 clocks

Month birth month 1.12	Day birth date 1.31	C	N number of clocks Wait takes
5	14	200	76,909
A	B	C	$5 * \mathrm{~A} * \mathrm{~B} * \mathrm{C}+8 * \mathrm{~A} * \mathrm{~B}+9 * \mathrm{~A}+4$
107	255	255	N

Wait:
movlw MONTH (A)
movwf CNT2
W2 :

movlw	DAY
movwf	CNT1
nop	
nop	
nop	
nop	

W1:

W0:

4
$9 * 5$

5) Assember \& Flow Charts. Write an assembler program to turn your PIC processor into a data encryption device with the encryption method depending upon which button is pressed:

- $\mathrm{RB} 0=$ clock change PORTD on a rising edge
- $\mathrm{RB} 1=1 \quad \mathrm{PORTD}=\mathrm{PORTC}+17$
- $\mathrm{RB} 2=1 \quad$ PORTD $=$ PORTC -17
- otherwise PORTD = PORTC

```
    movlw 0xFF
    movwf TRISB
    movwf TRISC
    clrf TRISD
```

L1:
btfss PORTB,0
goto L1
L2:
btfsc PORTB,1
goto L3
btfsc PORTB,2
goto L4
L5:
movff PORTC,PORTD
goto L6
L3:
movlw 17
addwf PORTC,W
movwf PORTD
goto L6
L4:
movlw 17
subwf PORTC,w
movwf PORTD
L6:
btfsc PORTB, 0
goto L6
goto L1

