ECE 376 - Test #2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

1) C Coding & Flow Charts. Write a C program for video game cheat:

- Each time you press RB0 (rising edge)
- N pulses are output on RC0 (fire N times)
- Each pulse is on for 100ms, off for 100ms

Let N be your birth month plus one (2..14)

2) Binary Clock! Write a C subroutine to drive the display on a binary clock.

- Hours, Minutes, and Seconds are passed to the subroutine
- Hours are displayed on PORTA as (tens : ones)
- Minutes are displayed on PORTB as (tens : ones)
- Seconds are displayed on PORTC as (tens : ones)

For example: 12:36:57 would display as

Analog Inputs

3) Assume the A/D input to a PIC processor has the following hardware connection where R_T is a 3k thermistor where T is the temperature in degrees C

$$R_T = 2000 \cdot \exp\left(\frac{4200}{T + 273} - \frac{4200}{298}\right) \Omega$$

Let R be a resistor

 $R = 900 + 100^{*}$ (your birth month) + (your birth date).

If the A/D reading is 769, determine

- The voltage at V1
- The resistance, RT,
- The temperature, T, in degrees C, and
- The smallest change in temperature you can detect

R	A/D Reading	V1	R _T	Temperature	Smallest change in T
900 + 100*mo + day		volts	Ohms	degrees C	you can detect
1414	769	3.7586V	4280.97 Ohms	9.733 C	0.0998 C

$$V_{1} = \left(\frac{769}{1023}\right) 5V = 3.7586V$$
$$R_{T} = \left(\frac{3.7586V}{5V - 3.7586V}\right) 1414\Omega = 4280.97\Omega$$
$$T = 9.733^{0}C$$

If the A/D was 770 (the smallest chance in the A/D is one count0

$$V_{1} = \left(\frac{770}{1023}\right) 5V = 3.7634V$$
$$R_{T} = \left(\frac{3.7634V}{5V - 3.7634V}\right) 1414\Omega = 4303.48\Omega$$
$$T = 9.633^{0}C$$

The temperature difference is

 $dT = 0.0998^{\circ}C$

chi-squared test

4) (10pt). The number of scores that fall into each region for NFL teams in 2021 (week 1-4) are:

0-9		10-19	20-29	30-39	40-49
11	l	33	48	30	6

Use a chi-squared test to determine the probability that points scored follows a Normal distribution with

- Mean = 23.5
- Standard Deviation = 9.66

Points Scored	probability p	np n = 128 scores	N # scores in this region	chi-squared score
0 - 9	0.074	9.47	11	0.2472
10 - 19	0.3326	45.57	33	3.4673
20 - 29	0.393	50.30	48	0.1052
30 - 39	0.218	27.90	30	0.1581
40+	0.049	6.72	6	0.0771
			Total	4.05

There is a 60% chance that scores do not follow a normal distribution

Chi-Squared Table										
Probability of rejecting the null hypothesis										
dof	99%	95%	90%	80%	60%	40%	20%	10%	5%	1%
1	6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
2	9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
3	11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
4	13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
5	15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41

t-Tests

5) (15pt) The current gain of four ZTX869 transistors were measured using the correct and incorrect polarity

polarity	Current gain	mean	st dev
A: correct	{ 605, 743, 564, 588}	625.0	80.44
B: incorrect	{507, 655. 452. 488 }	525.5	89.29

a) What is the 90% confidence interval for the gain of a ZTX869 transistor when used with the correct polarity?

With 5% tails and 3 degrees of freedom (sample size four) the t-score is 2.35

 $625 - 2.35 \cdot 88.44 < \beta < 625 + 2.35 \cdot 80.44$ $417.17 < \beta < 832.83$

b) What is the probability that the correct polarity has a higher gain than the incorrect polarity?

for any given transistor (individual)

$$W = A - B$$

$$\bar{x}_w = 625 - 525.5 = 99.5$$

$$s_w = \sqrt{s_A^2 + s_B^2} = 120.18$$

$$t = \frac{99.5}{120.18} = 0.8279$$

3 degrees of freedom: p = 0.23 (about)

There is 23% chance that a given transistor has a higher gain when used backwards

	Student t-Table										
	area of tail										
dof \ p	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0	
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62	
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6	
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92	
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61	
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87	
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29	

(take 2) Population:

$$W = A - B$$

$$\bar{x}_{w} = 625 - 525.5 = 99.5$$

$$s_{w} = \sqrt{\frac{s_{A}^{2}}{4} + \frac{s_{B}^{2}}{4}} = 60.09$$

$$t = \frac{99.5}{60.09} = 1.6558$$

3 degrees of freedom

Converting to a probability, p = 10%

There is a 10% chance that, overall, ZTX869 transistors have a higher gain when used backwards

Student t-Table										
area of tail										
dof \ p 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0									0.0005	
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29

(take 3): Another way to analyze the data: Take the ratio of the gains (only works if you have access to each transistor's gain each way)

A/B = {1.1933, 1.1344, 1.2478, 1.2049}

mean = 1.1951

st dev = 0.0468

t-score

$$t = \left(\frac{1.1951 - 1.0000}{0.0468}\right) = 4.1688$$

This corresponds to a tail of 1.26% (or 98.74% chance).

There is nearly a 98.74% chance that the gain of given ZTX869 transistor is higher when used with the correct polarity than with the incorrect polarity.