ECE 376-Test \#2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

1) C Coding \& Flow Charts. Write a C program for video game cheat:

- Each time you press RB0 (rising edge)
- N pulses are output on RC0 (fire N times)
- Each pulse is on for 100 ms , off for 100 ms

Let N be your birth month plus one (2..14)
$\mathrm{N}=6$ (month +1)

TRISB $=0 x F F:$
TRISC $=0$;
while(1) \{ while(RBO == 0); for (i=0; i<6; $i++$) \{ $\mathrm{RCO}=1$; Wait_ms (100) ; $\mathrm{RCO}=0$; Wait_ms (100); \} while(RBO == 1); \}
2) Binary Clock! Write a C subroutine to drive the display on a binary clock.

- Hours, Minutes, and Seconds are passed to the subroutine
- Hours are displayed on PORTA as (tens : ones)
- Minutes are displayed on PORTB as (tens : ones)
- Seconds are displayed on PORTC as (tens : ones)

For example: 12:36:57 would display as


```
void Problem2(unsigned char Hr, Min, Sec);
```

void Problem2(unsigned char Hr, Min, Sec);
{
{
unsignded char Ten, One;
unsignded char Ten, One;
Ten = Hr / 10;
Ten = Hr / 10;
One = Hr % 10;
One = Hr % 10;
PORTA = Ten*16 + One;
PORTA = Ten*16 + One;
Ten = Min / 10;
Ten = Min / 10;
One = Min % 10;
One = Min % 10;
PORTB = Ten << 4 + One;
PORTB = Ten << 4 + One;
Ten = Sec / 10;
Ten = Sec / 10;
One = Sec % 10;
One = Sec % 10;
PORTC = Ten*16 + One;
PORTC = Ten*16 + One;
}

```

\section*{Analog Inputs}
3) Assume the \(\mathrm{A} / \mathrm{D}\) input to a PIC processor has the following hardware connection where \(\mathrm{R}_{\mathrm{T}}\) is a 3 k thermistor where T is the temperature in degrees C
\[
R_{T}=2000 \cdot \exp \left(\frac{4200}{T+273}-\frac{4200}{298}\right) \Omega
\]

Let R be a resistor
\[
\mathrm{R}=900+100^{*}(\text { your birth month })+(\text { your birth date }) .
\]

If the \(\mathrm{A} / \mathrm{D}\) reading is 769 , determine
- The voltage at V1

- The resistance, RT,
- The temperature, T, in degrees C , and
- The smallest change in temperature you can detect
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
R \\
\(900+100^{*} \mathrm{mo}+\) day
\end{tabular} & A/D Reading & \begin{tabular}{c}
V 1 \\
volts
\end{tabular} & \begin{tabular}{c}
\(\mathrm{R}_{\mathrm{T}}\) \\
Ohms
\end{tabular} & \begin{tabular}{c} 
Temperature \\
degrees C
\end{tabular} & \begin{tabular}{c} 
Smallest change in T \\
you can detect
\end{tabular} \\
\hline \(\mathbf{1 4 1 4}\) & \(\mathbf{7 6 9}\) & \(\mathbf{3 . 7 5 8 6 \mathrm { V }}\) & \begin{tabular}{c}
\(\mathbf{4 2 8 0 . 9 7}\) \\
Ohms
\end{tabular} & \(\mathbf{9 . 7 3 3 \mathrm { C }}\) & \(\mathbf{0 . 0 9 9 8} \mathbf{C}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& V_{1}=\left(\frac{769}{1023}\right) 5 V=3.7586 \mathrm{~V} \\
& R_{T}=\left(\frac{3.7586 \mathrm{~V}}{5 \mathrm{~V}-3.7586 V}\right) 1414 \Omega=4280.97 \Omega \\
& T=9.733^{\circ} \mathrm{C}
\end{aligned}
\]

If the \(A / D\) was 770 (the smallest chance in the \(A / D\) is one count 0
\[
\begin{aligned}
& V_{1}=\left(\frac{770}{1023}\right) 5 V=3.7634 V \\
& R_{T}=\left(\frac{3.7634 V}{5 V-3.7634 V}\right) 1414 \Omega=4303.48 \Omega \\
& T=9.633{ }^{\circ} \mathrm{C}
\end{aligned}
\]

The temperature difference is
\[
d T=0.0998^{0} C
\]

\section*{chi-squared test}
4) (10pt). The number of scores that fall into each region for NFL teams in 2021 (week 1-4) are:
\begin{tabular}{|c|c|c|c|c|}
\hline \(0-9\) & \(10-19\) & \(20-29\) & \(30-39\) & \(40-49\) \\
\hline 11 & 33 & 48 & 30 & 6 \\
\hline
\end{tabular}

Use a chi-squared test to determine the probability that points scored follows a Normal distribution with
- Mean \(=23.5\)
- Standard Deviation \(=9.66\)
\begin{tabular}{|c|c|c|c|c|}
\hline Points Scored & \begin{tabular}{c} 
probability p \\
normal distribution
\end{tabular} & \begin{tabular}{c}
np \\
\(\mathrm{n}=128\) scores
\end{tabular} & \begin{tabular}{c}
N \\
\# scores in this region
\end{tabular} & chi-squared score \\
\hline \(0-9\) & 0.074 & 9.47 & 11 & \(\mathbf{0 . 2 4 7 2}\) \\
\hline \(10-19\) & 0.3326 & 45.57 & 33 & \(\mathbf{3 . 4 6 7 3}\) \\
\hline \(20-29\) & 0.393 & 50.30 & 48 & \(\mathbf{0 . 1 0 5 2}\) \\
\hline \(30-39\) & 0.218 & 27.90 & 30 & \(\mathbf{0 . 1 5 8 1}\) \\
\hline \(40+\) & 0.049 & 6.72 & 6 & \(\mathbf{0 . 0 7 7 1}\) \\
\hline
\end{tabular}

There is a \(60 \%\) chance that scores do not follow a normal distribution

Chi-Squared Table
Probability of rejecting the null hypothesis
\begin{tabular}{ccccccccccc} 
dof & \(99 \%\) & \(95 \%\) & \(90 \%\) & \(80 \%\) & \(60 \%\) & \(40 \%\) & \(20 \%\) & \(10 \%\) & \(5 \%\) & \(1 \%\) \\
1 & 6.64 & 3.84 & 2.71 & 1.65 & 0.71 & 0.28 & 0.06 & 0.02 & 0 & 0 \\
2 & 9.21 & 5.99 & 4.61 & 3.22 & 1.83 & 1.02 & 0.45 & 0.21 & 0.05 & 0.01 \\
3 & 11.35 & 7.82 & 6.25 & 4.64 & 2.95 & 1.87 & 1.01 & 0.58 & 0.22 & 0.07 \\
4 & 13.28 & 9.49 & 7.78 & 5.99 & 4.05 & 2.75 & 1.65 & 1.06 & 0.48 & 0.21 \\
5 & 15.09 & 11.07 & 9.24 & 7.29 & 5.13 & 3.66 & 2.34 & 1.61 & 0.83 & 0.41
\end{tabular}

\section*{t-Tests}
5) (15pt) The current gain of four ZTX869 transistors were measured using the correct and incorrect polarity
\begin{tabular}{|c|c|c|c|}
\hline polarity & Current gain & mean & st dev \\
\hline A: correct & \(\{605,743,564,588\}\) & 625.0 & 80.44 \\
\hline B: incorrect & \(\{507,655.452 .488\}\) & 525.5 & 89.29 \\
\hline
\end{tabular}
a) What is the \(90 \%\) confidence interval for the gain of a ZTX869 transistor when used with the correct polarity?

With \(5 \%\) tails and 3 degrees of freedom (sample size four) the \(t\)-score is 2.35
\[
\begin{aligned}
& 625-2.35 \cdot 88.44<\beta<625+2.35 \cdot 80.44 \\
& 417.17<\beta<832.83
\end{aligned}
\]
b) What is the probability that the correct polarity has a higher gain than the incorrect polarity? for any given transistor (individual)
\[
\begin{aligned}
& W=A-B \\
& \bar{x}_{w}=625-525.5=99.5 \\
& s_{w}=\sqrt{s_{A}^{2}+s_{B}^{2}}=120.18 \\
& t=\frac{99.5}{120.18}=0.8279
\end{aligned}
\]

3 degrees of freedom: \(\mathrm{p}=0.23\) (about)
There is \(\mathbf{2 3 \%}\) chance that a given transistor has a higher gain when used backwards
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{\begin{tabular}{c} 
Student t-Table \\
area of tail
\end{tabular}} \\
\hline dof \(\backslash \mathrm{p}\) & 0.25 & 0.20 & 0.15 & 0.10 & 0.05 & 0.025 & 0.01 & 0.005 & 0.001 & 0 \\
\hline 1 & 1 & 1.38 & 1.96 & 3.08 & 6.31 & 12.71 & 31.82 & 63.66 & 318.31 & 636.62 \\
\hline 2 & 0.82 & 1.06 & 1.39 & 1.89 & 2.92 & 4.3 & 6.97 & 9.93 & 22.33 & 31.6 \\
\hline 3 & 0.77 & 0.98 & 1.25 & 1.64 & 2.35 & 3.18 & 4.54 & 5.84 & 10.22 & 12.92 \\
\hline 4 & 0.74 & 0.94 & 1.19 & 1.53 & 2.13 & 2.78 & 3.75 & 4.6 & 7.17 & 8.61 \\
\hline 5 & 0.73 & 0.92 & 1.16 & 1.48 & 2.02 & 2.57 & 3.37 & 4.03 & 5.89 & 6.87 \\
\hline infinity & 0.674 & 0.842 & 1.036 & 1.282 & 1.645 & 1.960 & 2.326 & 2.576 & 3.090 & 3.29 \\
\hline
\end{tabular}
(take 2) Population:
\[
\begin{aligned}
& W=A-B \\
& \bar{x}_{w}=625-525.5=99.5 \\
& s_{w}=\sqrt{\frac{s_{A}^{2}}{4}+\frac{s_{B}^{2}}{4}}=60.09 \\
& t=\frac{99.5}{60.09}=1.6558
\end{aligned}
\]
\[
3 \text { degrees of freedom }
\]

Converting to a probability, \(\mathrm{p}=10 \%\)
There is a \(10 \%\) chance that, overall, ZTX869 transistors have a higher gain when used backwards
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{\begin{tabular}{c} 
Student t-Table \\
area of tail
\end{tabular}} \\
\hline dof \(\backslash \mathrm{p}\) & 0.25 & 0.20 & 0.15 & 0.10 & 0.05 & 0.025 & 0.01 & 0.005 & 0.001 & 0.0005 \\
\hline 1 & 1 & 1.38 & 1.96 & 3.08 & 6.31 & 12.71 & 31.82 & 63.66 & 318.31 & 636.62 \\
\hline 2 & 0.82 & 1.06 & 1.39 & 1.89 & 2.92 & 4.3 & 6.97 & 9.93 & 22.33 & 31.6 \\
\hline 3 & 0.77 & 0.98 & 1.25 & 1.64 & 2.35 & 3.18 & 4.54 & 5.84 & 10.22 & 12.92 \\
\hline 4 & 0.74 & 0.94 & 1.19 & 1.53 & 2.13 & 2.78 & 3.75 & 4.6 & 7.17 & 8.61 \\
\hline 5 & 0.73 & 0.92 & 1.16 & 1.48 & 2.02 & 2.57 & 3.37 & 4.03 & 5.89 & 6.87 \\
\hline infinity & 0.674 & 0.842 & 1.036 & 1.282 & 1.645 & 1.960 & 2.326 & 2.576 & 3.090 & 3.29 \\
\hline
\end{tabular}
(take 3): Another way to analyze the data: Take the ratio of the gains (only works if you have access to each transistor's gain each way)
\[
\mathrm{A} / \mathrm{B}=\{1.1933,1.1344,1.2478,1.2049\}
\]
mean \(=1.1951\)
st \(\operatorname{dev}=0.0468\)
t-score
\[
t=\left(\frac{1.1951-1.0000}{0.0468}\right)=4.1688
\]

This corresponds to a tail of \(1.26 \%\) (or \(98.74 \%\) chance).
There is nearly a \(98.74 \%\) chance that the gain of given ZTX869 transistor is higher when used with the correct polarity than with the incorrect polarity.```

