ECE 376-Test \#2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

1) C Coding \& Flow Charts. Write a C program for video game cheat:

- Each time you press RB0 (rising edge)
- N pulses are output on RC 0 (fire N times)
- Each pulse is on for 100 ms , off for 100 ms

Let N be your birth month plus one (2..14)
$N=$ \qquad (month + 1)

```
#include <pic18.h>
void main(void) {
    ADCON1 = 0x0F;
```


2) Binary Clock! Write a C subroutine to drive the display on a binary clock.

- Hours, Minutes, and Seconds are passed to the subroutine
- Hours are displayed on PORTA as (tens : ones)
- Minutes are displayed on PORTB as (tens : ones)
- Seconds are displayed on PORTC as (tens : ones)

For example: 12:36:57 would display as

Analog Inputs

3) Assume the A / D input to a PIC processor has the following hardware connection where R_{T} is a 3 k thermistor where T is the temperature in degrees C

$$
R_{T}=2000 \cdot \exp \left(\frac{4200}{T+273}-\frac{4200}{298}\right) \Omega
$$

Let R be a resistor

$$
\mathrm{R}=900+100^{*}(\text { your birth month })+(\text { your birth date }) .
$$

If the A / D reading is 769 , determine

- The voltage at V1

- The resistance, R_{T},
- The temperature, T, in degrees C , and
- The smallest change in termperature you can detect

R $900+100 * \mathrm{mo}+$ day	A/D Reading	V1 volts	R_{T} Ohm	Temperature degrees C	Smallest change in T you can detect
	$\mathbf{7 6 9}$				

chi-squared test

4) (10pt). The number of scores that fall into each region for NFL teams in 2021 (week 1-4) are:

$0-9$	$10-19$	$20-29$	$30-39$	$40-49$
11	33	48	30	6

Use a chi-squared test to determine the probability that points scored follows a Normal distribution with

- Mean $=23.5$
- Standard Deviation $=9.66$

Points Scored	probability p normal distribution	np $\mathrm{n}=128$ scores	N \# scores in this region	chi-squared score
$0-9$	0.074	9.47	11	
$10-19$	0.3326	45.57	33	
$20-29$	0.393	50.30	48	
$30-39$	0.218	27.90	30	
$40+$	0.049	6.72	6	

Chi-Squared Table

	Probability of rejecting the null hypothesis									
dof	99%	95%	90%	80%	60%	40%	20%	10%	5%	1%
1	6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
2	9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
3	11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
4	13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
5	15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41

t-Tests

5) (15pt) The current gain of four ZTX869 transistors were measured using the correct and incorrect polarity

polarity	Current gain	mean	st dev
correct	$\{605,743,564,588\}$	625.0	80.44
incorrect	$\{507,655.452 .488\}$	525.5	89.29

a) What is the 90% confidence interval for the gain of a ZTX869 transistor when used with the correct polarity?
b) What is the probability that the correct polarity has a higher gain than the incorrect polarity?

Student t-Table													
area of tail													
dof $\backslash \mathrm{p}$	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0			
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62			
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6			
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92			
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61			
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87			
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29			

