ECE 376 - Test #3: Name _____

Spring 2022. Open-Book, Open Note

1) Single Interrupt - Strobe Light: Using Timer2 interrupts, write a C program which outputs the following signal on RC0:

- On for 3 interrupts (0.75ms)
- Off for 127 interrupts (31.75ms)
- Repeat

0.75ms		0.75ms
RC0	31.75ms	

Timer2 Initialization: Set up Timer2 for 250us

N 250us = N clocks	А	В	С
2500	10	250	1

Main Routine - main loop	Timer2 Interrupt Routine
<pre>while(1) { }</pre>	<pre>void Interrupt(void) { if(TMR2IF) { N = (N + 1) % 130;</pre>
<pre>// not needed // interrupt does all the work</pre>	<pre>if(N < 3) RC0 = 1; else RC0 = 0; TMR2IF = 0; }</pre>

2) Multiple Interrupts: Write a C program which uses interrupts to do the following:

- When RB0 goes high
- RC0 outputs three pulses
 - 1ms high
 - 2ms low
 - 3ms high
 - 4ms low, then
 - 5ms high

// Global Variables

// main loop and interrupts: (specify these sections of code)

Main Routine if needed	INT0 rising edge of RB0	Timer0 set / clear RC0
while(1) {	if(INTOIF) {	if(TMROIF) {
}	<pre>N = 0; TMR0 = -10000; RC0 = 1; INT0IF = 0; }</pre>	<pre>lf(N < 5) { N = N + 1; if(N == 1) { TMR0 = -20000; RC0 = 0; } elseif(N == 2) { TMR0 = -30000; RC0 = 1; } elseif(N == 3) { TMR0 = -40000; RC0 = 0; } elseif(N == 4) { TMR0 = -50000; RC0 = 1; } else { RC0 = 0; } TMR0IF = 0; } }</pre>

3) Timer1 Capare/Compare: Frequency Multiplier

Write the interrupt service routine for a C program which uses Timer1 Compare and Timer1 Compare to output a square wave which is X times the frequency of the input square wave. Assume

- The input square wave is in the range of 200Hz to 1000Hz
- Timer1 Capture1 (RC2) receives a 0V/5V square wave, and
- Timer1 Compare 2 (RC1) outputs a square wave with a frequency X times the frequency of the input

where

// Global variables
 unsigned long int TIME;
 unsigned long int N1, N2;

// Interrupts

Timer1	Capture 1 Input squre wave on RC2	Compare 2 Output a square wave on RC1
<pre>if(TMR1IF) { TIME = TIME + 0x1000; TMR1IF = 0; } </pre>	<pre>if(CCP1IF) { T2 = T1; T1 = TIME + CCPR1; N1 = T1 - T2; N2 = N1 / 4.8; CCPR1IF = 0; }</pre>	<pre>if(CCP2IF) { CCPR2 += N2; CCp2CON = CCP2CON ^ 1; CCP2IF = 0; } // works if N2 < 65,535</pre>

4) Filter Analysis: Assume X and Y are related by the following transfer function

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right) X = \left(\frac{2z-1.8}{z^2-1.3z+0.4}\right) X$$

a) What is the difference equation that relates X and Y?

Cross multiply

$$(z2 - 1.3z + 0.4)Y = (2z - 1.8)X$$
$$y(k+2) - 1.3y(k+1) + 0.4y(k) = 2x(k+1) - 1.8x(k)$$

b) Find y(t) assuming

 $x(t) = 2 + 3\cos(500t) + 4\sin(500t)$

Assume a sampling rate of T us where

 $T = 900 + 100^{*}$ (your birth month) + (your birth date) micro-seconds

T = 1414us

DC

$$x(t) = 2$$

$$s = 0$$

$$z = e^{sT} = 1$$

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=1} \cdot (2)$$

$$Y = 4$$

AC

$$x(t) = 3 - j4$$

$$s = j500$$

$$z = e^{sT} = 1 \angle 40.5^{0}$$

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=1 \angle 40.5^{0}} \cdot (3 - j4)$$

$$Y = -5.169 - j13.464$$

$$y(t) = -5.169 \cos(500t) + 13.464 \sin(500t)$$

The total answer is then the sum of the DC and AC terms

$$y(t) = 4 - 5.169\cos(500t) + 13.464\sin(500t)$$

5) Filter Design: Give the transfer funciton for a digital filter which has approximately the same frequecy response as

$$G(s) = \left(\frac{5000(s+200)}{(s+700)(s+900)}\right)$$

Assume a sampling rate of T us where

 $T = 900 + 100^{*}$ (your birth month) + (your birth date) micro-seconds

T = 1414us

Converting the poles and zeros

s = -200 $z = e^{sT} = 0.7537$ s = -700 $z = e^{sT} = 0.3717$ s = -900 $z = e^{sT} = 0.2801$

so, matching the poles and zeros

$$G(z) = \left(\frac{k(z-0.7537)}{(z-0.3717)(z-0.2801)}\right)$$

To find k, match the DC gain

$$\left(\frac{5000(s+200)}{(s+700)(s+900)}\right)_{s=0} = 1.5873$$
$$\left(\frac{k(z-0.7537)}{(z-0.3717)(z-0.2801)}\right)_{z=1} = 1.5873$$
$$k = 2.9150$$

so

$$G(z) = \left(\frac{2.9150(z-0.7537)}{(z-0.3717)(z-0.2801)}\right)$$