ECE 376 - Test #3: Name _____

Spring 2022. Open-Book, Open Note

1) Single Interrupt - Strobe Light: Using Timer2 interrupts, write a C program which outputs the following signal on RC0:

- On for 3 interrupts (0.75ms)
- Off for 127 interrupts (31.75ms)
- Repeat

0.75ms		0.75ms
RC0	31.75ms	

Timer2 Initialization: Set up Timer2 for 250us

N 250us = N clocks	А	В	С

Main Routine - main loop cycle from green to yellow to red & repeat Assume Timer2, A/D, etc are initialized	Timer2 Interrupt Routine
<pre>while(1) {</pre>	<pre>void Interrupt(void) { if(TMR2IF) {</pre>

2) Multiple Interrupts: Write a C program which uses interrupts to do the following:

- When RB0 goes high
- RC0 outputs three pulses
 - 1ms high
 - 2ms low
 - 3ms high
 - 4ms low, then
 - 5ms high

// Global Variables

// main loop and interrupts: (specify these sections of code)

Main Routine if needed	INTO rising edge of RB0	Timer0 set / clear RC0
<pre>while(1) {</pre>	if(INTOIF) {	if(TMROIF) {

3) Timer1 Capare/Compare: Frequency Multiplier

Write the interrupt service routine for a C program which uses Timer1 Compare and Timer1 Compare to output a square wave which is X times the frequency of the input square wave. Assume

- The input square wave is in the range of 200Hz to 1000Hz
- Timer1 Capture1 (RC2) receives a 0V/5V square wave, and
- Timer1 Compare 2 (RC1) outputs a square wave with a frequency X times the frequency of the input

where

// Global Variables (if needed)

// Interrupts

Timer1	Capture 1 Input squre wave on RC2	Compare 2 Output a square wave on RC1
if(TMR1IF) {	if(CCPR1IF) {	if(CCPR2IF) {

4) Filter Analysis: Assume X and Y are related by the following transfer function

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)X = \left(\frac{2z-1.8}{z^2-1.3z+0.4}\right)X$$

- a) What is the difference equation that relates X and Y?
- b) Find y(t) assuming

 $x(t) = 2 + 3\cos(500t) + 4\sin(500t)$

Assume a sampling rate of T us where

 $T = 900 + 100^{*}$ (your birth month) + (your birth date) micro-seconds

Т	a) difference equation:
900 + 100*mo + day (microseconds)	
	b) $y(t) =$

5) Filter Design: Give the transfer funciton for a digital filter which has approximately the same frequecy response as

$$G(s) = \left(\frac{5000(s+200)}{(s+700)(s+900)}\right)$$

Assume a sampling rate of T us where

 $T = 900 + 100^{*}$ (your birth month) + (your birth date) micro-seconds

T 900 + 100*mo + day (microseconds)	G(z)