ECE 376-Test \#3: Name

Spring 2022. Open-Book, Open Note

1) Single Interrupt - Strobe Light: Using Timer2 interrupts, write a C program which outputs the following signal on RC0:

- On for 3 interrupts (0.75 ms)
- Off for 127 interrupts (31.75 ms)
- Repeat

Timer2 Initialization: Set up Timer2 for 250us

N $250 \mathrm{us}=\mathrm{N}$ clocks	A	B	C

Main Routine - main loop cycle from green to yellow to red \& repeat Assume Timer2, A/D, etc are intialized	Timer2 Interrupt Routine
while (1) \{	void Interrupt (void) \{ if(TMR2IF) \{

2) Multiple Interrupts: Write a C program which uses interrupts to do the following:

- When RB0 goes high
- RC0 outputs three pulses
- 1 ms high
- 2 ms low
- 3ms high
- 4 ms low, then
- 5ms high

// Global Variables
// main loop and interrupts: (specify these sections of code)

3) Timer1 Capare/Compare: Frequency Multiplier

Write the interrupt service routine for a C program which uses Timer1 Compare and Timerl Compare to output a square wave which is X times the frequency of the input square wave. Assume

- The input square wave is in the range of 200 Hz to 1000 Hz
- Timer1 Capture 1 (RC2) receives a $0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, and
- Timer1 Compare $2(\mathrm{RC} 1)$ outputs a square wave with a frequency X times the frequency of the input
where

$X=\left(1+\left(\frac{\text { birth day }(1.31)}{10}\right)\right)$	$\mathrm{X}=$

// Interrupt Initialization

Timer1 pre-scalar $(1 / 2 / 4 / 8)$	Capture 1 (RC2) falling edge / rising edge / 4th rising / 16th rising	Compare 2 (RC1) Set RC1 / Clear RC1 / No Change

// Global Variables (if needed)
// Interrupts

Timer1		Capture 1 Input squre wave on RC2	Compare 2 Output a square wave on RC1
if $($ TMR1IF $)\{$	if (CCPR1IF $\quad\{$	if (CCPR2IF) \{	

4) Filter Analysis: Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right) X=\left(\frac{2 z-1.8}{z^{2}-1.3 z+0.4}\right) X
$$

a) What is the difference equation that relates X and Y ?
b) Find $y(t)$ assuming

$$
x(t)=2+3 \cos (500 t)+4 \sin (500 t)
$$

Assume a sampling rate of T us where

$$
\mathrm{T}=900+100 *(\text { your birth month })+(\text { your birth date }) \text { micro-seconds }
$$

T	a) difference equation:
$900+100^{*} \mathrm{mo}+$ day (microseconds)	b) $\mathrm{y}(\mathrm{t})=$

5) Filter Design: Give the transfer funciton for a digital filter which has approximately the same frequecy response as

$$
G(s)=\left(\frac{5000(s+200)}{(s+700)(s+900)}\right)
$$

Assume a sampling rate of T us where
$\mathrm{T}=900+100 *$ (your birth month) + (your birth date) micro-seconds

T	$\mathrm{G}(\mathrm{z})$
$900+100 * \mathrm{mo}+$ day (microseconds)	

