ECE 376 - Final: Name

Calculators Permitted.

1) Binary Input: Schmitt Trigger. Design a circuit which outputs

- 0 V when the magnetic field is >0.55 Gauss
- 5 V when the magnetic field is <0.45 Gauss

Assume you have a thermistor where

$$
R=1000 \cdot(1+0.1 G) \Omega
$$

and G is the magnetic field strength in Gauss

$\mathrm{G}=+0.55: \quad(\mathrm{Y}=0)$

$$
R=1055 \Omega
$$

$$
V_{x}=\left(\frac{R}{R+1000}\right) 5 V=2.567 \mathrm{~V}
$$

$\mathrm{G}=0.45(\mathrm{Y}=5 \mathrm{~V})$

$$
R=1045 \Omega
$$

$$
V_{x}=\left(\frac{R}{R+1000}\right) 5 V=2.555 V
$$

Connect to the minus input (Von < Voff)
Offset $=2.555 \mathrm{~V}($ where Y goes high $)$

$$
\text { gain }=\left(\frac{5 V-0 V}{2.567 V-2.555 V}\right)=420.2
$$

2) Analog Input: A magentic field sensor has the following resistance vs. magnetic field relationship

$$
R=1000 \cdot(1+0.1 G) \Omega
$$

where G is the magnetic field strength in Gauss.

2a) Determine the A / D reading for the following circuit at -1 Gauss / 0 Gauss /+1 Gauss

-1 Gauss	0 Gauss	+1 Gauss
485	512	536

-1 Gauss

$$
\begin{aligned}
& R=900 \\
& V=\left(\frac{900}{900+1000}\right) 5 V=2.368 V \\
& A / D=\left(\frac{2.368 V}{5.000 V}\right) 1023=484.6
\end{aligned}
$$

0 Gauss

$$
\begin{aligned}
& R=1000 \\
& V=\left(\frac{1000}{1000+1000}\right) 5 V=2.500 V \\
& A / D=511.5
\end{aligned}
$$

+1 Gauss

$$
\begin{aligned}
& R=1100 \\
& V=\left(\frac{1100}{1100+1000}\right) 5 V=2.619 V \\
& A / D=535.9
\end{aligned}
$$

2b) Give a calibration function to compute the field strength in Gauss based upon the A / D reading

$$
G=\left(\frac{536-485}{2}\right)(A / D-512)=0.03922(A / D-512)
$$

2c) What is the smallest change in magetic field you can detect with your code (i.e. the resolution of this sensor)? smallest change a PIC can detect is 1 count on the A/D smallest change a PIC can detect is 0.03922 Gauss
3) C Coding: The following flow chart is for a JK flip flop. Write the corresponding C code

RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
-	-	-	-	Q output	J input	K input	CLK input

```
TRISB = 0x07;
RB3 = 0;
while(1) {
    while(RBO);
    while(!RB0);
    if(RB2)
        if(RB1) RB3 = !RB3;
        else RB3 = 1;
    else
        if(RB1) RB3 = 0;
    }
```


4) C Programming: Write subroutine which

- Is passes a number from 0 to $5(\mathrm{~N})$, and
- Lights up that many lights on PORTC as a bar graph

N	0	1	2	3	4	5
PORTC	00000000	00000001	00000011	00000111	00001111	00011111

```
void Problem4(unsigned char N)
{
    if(N == 0) PORTC =0x00;
    if(N == 1) PORTC =0x01;
    if(N == 2) PORTC =0x03;
    if(N == 3) PORTC =0x07;
    if(N == 4) PORTC =0x0F;
    if(N == 5) PORTC =0x1F;
    }
```

not stylish, but you can do pretty much anything with if-statements.
5) A square wave with a frequency between 1 Hz and 5 Hz is applied to the PIC. Write a program which can measure the period of the square wave using Timer 0 with a resolution of 1 ms or better.
a) Hardware: What I/O pin do you connect the signal to and what interrupt are you using?

I/O Pin on PIC	Interrupt Used
RB0	INT0 interrupt (rising edge)
	Timer0 interrupt

b) Interrupt Initialization (i.e. pre-scalar you are using for Timer $0 / 1 / 3$ or ABC tor Timer2)

INT0:

rising edge
Timer0

$$
\mathrm{PS}=1
$$

c) Interrupt Service Routine: Measure the period and compute the frequency in Hz

```
void interrupt IntServe(void) {
    if(INTOIF) {
        T0 = T1;
        T1 = TIME + TMR0;
        Period = T1 - T0;
        Hz = 10000000.0 / Period;
        INTOIF = 0;
        }
    if(TMROIF) {
        TIME = TIME + 0x10000;
        TMROIF = 0;
        }
    }
```

note:

- floating point operations OK to use since you have $2,000,000+$ clocks between rising edges
- the period is measured with a resolution of 100 ns

6) Interrupts Changing Interrupts: Using interrupts, generate

- A 100 ms pulse on RC0 when you press RB0
- A 300 ms pulse on RC0 when you press RB1

6a) Interrupt Set-Up: Specify the initialization for INT0 and Timer2 interrupts

INT0 Setup (rising edge)	INT1 Setup (rising edge)	Timer0 Setup (PS)
INTEDG0 $=1 ;$	INTEDG1 $=1 ;$	PS $=64 ;$

6b) Interrupt Service Routine:

INT0	INT1	Timer0
if(INTOIF) \{	if (INT1IF) \{	if (TMR0IF) \{
$\mathrm{RCO}=1 ;$	$\mathrm{RCO}=1 ;$	$\mathrm{RCO}=0$;
$\begin{array}{rl} / / 100 \mathrm{~ms} & @ P S=64 \\ \text { TMR0 } & =-15625 ; \end{array}$	$\begin{aligned} & / / 300 \mathrm{~ms} @ \mathrm{PS}=64 \\ & \mathrm{TMR0}=-46875 ; \end{aligned}$	TMR0IF $=0$;
INTOIF $=0$;	INT1IF $=0$;	
\}	\}	

