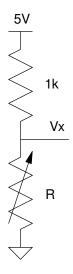
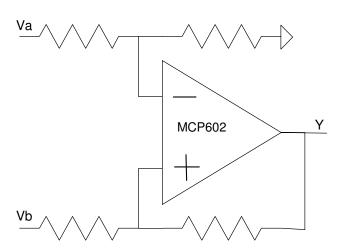
ECE 376 - Final: Name

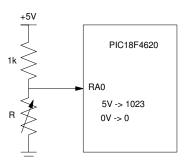

Calculators Permitted.


- 1) Binary Input: Schmitt Trigger. Design a circuit which outputs
 - 0V when the magnetic field is > 0.55 Gauss
 - 5V when the magnetic field is < 0.45 Gauss

Assume you have a thermistor where

$$R = 1000 \cdot (1 + 0.1G) \Omega$$

and G is the magnetic field strength in Gauss

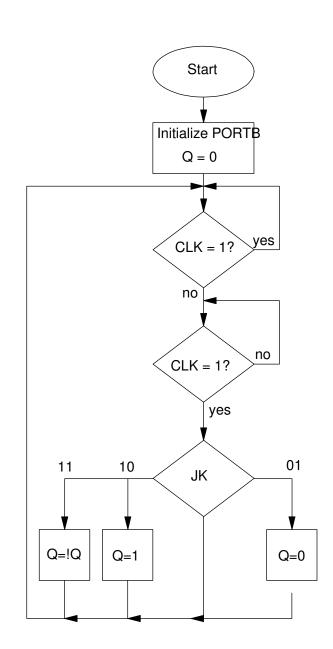


2) Analog Input: A magentic field sensor has the following resistance vs. magnetic field relationship

$$R = 1000 \cdot (1 + 0.1G) \Omega$$

where G is the magnetic field strength in Gauss.

2a) Determine the A/D reading for the following circuit at -1 Gauss / 0 Gauss / +1 Gauss


-1 Gauss	0 Gauss	+1 Gauss

2b) Give a calibration function to compute the field strength in Gauss based upon the A/D reading

2c) What is the smallest change in magetic field you can detect with your code (i.e. the resolution of this sensor)?

3) C Coding: The following flow chart is for a JK flip flop. Write the corresponding C code.

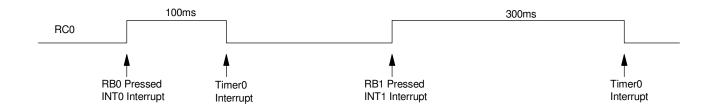
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
-	-	-	-	Q	J	K	CLK

4) C Programming: Write subroutine which

- Is passes a number from 0 to 5 (N), and
- Lights up that many lights on PORTC as a bar graph

N	0	1	2	3	4	5
PORTC	0000 0000	0000 0001	0000 0011	0000 0111	0000 1111	0001 1111

```
void Problem4(unsigned char N)
{
```


5) A square wave with a frequency between 1Hz and 5Hz is applied to the PIC. Write a program which can measure the period of the square wave using Timer 0 with a resolution of 1ms or better.
a) Hardware: What I/O pin do you connect the signal to and what interrupt are you using?

Interrupt Used		

h)	Interrupt Initialization (i.e.	nre-scalar you	are using for	r Timer 0/1/3	or ABC for	Timer2
υı	mienudi minanzandii (1.e	. Die-Scalai vou	are using to	1 1111161 0/1/3	of ADC for	111111111112

c) Interrupt Service Routine: Measure the period and compute the frequency in Hz void interrupt IntServe(void) {

- 6) Interrupts Changing Interrupts: Using interrupts, generate
 - A 100ms pulse on RC0 when you press RB0
 - A 300ms pulse on RC0 when you press RB1

6a) Interrupt Set-Up: Specify the initialization for INTO and Timer2 interrupts

INT0 Setup (rising edge)	INT1 Setup (rising edge)	Timer0 Setup (PS)
6h) Interrunt Service Routine		

6b) Interrupt Service Routine:						
INT0	INT1	Timer0				
if(INTOIF) {	if (INT1IF) {	if (TMR0IF) {				