ECE 376 - Homework \#4

C Programming and LCD Displays. Due Monday, February 13th
Please submit as a hard copy or submit on BlackBoard

1) Determine how many clocks the following C code takes to execute

- Compile and download the code (modify working code and replace the main loop)
- Measure the frequency you see on RC0 (toggles every loop).
- Use an osiclloscope - or -
- Connect a speaker to RC 0 with a 200 Ohm resistor and measure the frequency with a cell phone app like Piano Tuner
- RC 1 is $1 / 2$ the frequency of $\mathrm{RC} 0, \mathrm{RC} 2$ is $1 / 4$ th, $\mathrm{RC} 3=1 / 8$ th, etc
- The number of clocks it takes to execute each loop is

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)
$$

1a) Counting mod 8

```
unsigned char i
while(1) {
    i = (i + 1) % 8;
    if(i == 0) PORTC += 1;
    }
```

1b) Counting mod 7

```
unsigned char i
while(1) {
    i = (i + 1)% 7;
    if(i == 0) PORTC += 1;
    }
```

1c) Long Integer Division

```
unsigned long int A, B, C;
unsigned char i;
A = 0x12345678;
B = 0x1234;
while(1) {
    i = (i + 1)% 8;
    if (i == 0) PORTC += 1;
    C = A / B;
    }
```

1d) Floating Point Cosine (need to add \#include <math.h>)

```
float A, B, C;
A = 3.14159265379;
while(1) {
    i = (i + 1)% 8;
    if(i == 0) PORTC += 1;
    C = Cos(A);
    }
```


Beep

2) Write a C program which plays 200 Hz for 100 ms on a speaker
void Beep(void) \{
:
:
\}
3) Verify the frequency and duration of your note

\$65 Roulette Wheel

4) Give a flow chart for a program which turns your PIC into a Roulette wheel:

- On reset, you start with $\$ 10$ in your bank (which is displayed on the LCD).
- The game starts by pressing a button (RB0 .. RB7). The number you're betting on is the button you press (0..7).
- When you press and release a button, a random number, N , is generated in the range of $0 . .7$.
- The PIC will then count $(\bmod 8)$ on the LCD display $40+\mathrm{N}$ times, with one count every 200 ms
- Each time you count, a speaker should beep for 100 ms at 200 Hz (problem \#2)
- If the final count matches your bet, you win $\$ 8$. If not, you lose $\$ 1$.
- The game then repeats.
- The LCD displays your bank, the number you're betting on, and the current number on the roulette wheel

5) Write the C code for a roulette wheel
6) Verify your program

- On reset, you start with $\$ 10$ in your bank
- Numbers generated are random, in the range of $0 . .7$
- The LCD displays information correctly
- When you win, you gain $\$ 8$. When you lose, you lose $\$ 1$.

7) (20pt) Demonstration (in person or on a video)
