ECE 376 - Homework \#11 (revised)

z-Transforms and Digital Filters. Due Friday, April 21st
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{5(s+2)}{\left(s^{2}+4 s+30\right)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=6+5 \sin (4 t)
$$

2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.01(z+1)}{(z-0.96)(z-0.9)}\right) X
$$

a) What is the difference equation relating X and Y ?
b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=6+5 \sin (4 t)
$$

3) Assume $\mathrm{G}(\mathrm{s})$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{100}{(s+4)(s+5)(s+6)}\right)
$$

3) Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
4) Assume $G(s)$ is the following band-pass filter:

$$
G(s)=\left(\frac{30 s}{(s+2+j 15)(s+2-j 15)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.
5) Write a C program to implement the digital filter, $G(z)$

Filters \& Range Measurement

6) In Matlab, create data (x) to represent ultrasonic range sensor readings at a distance of 100 mm . For the raw data (x), determine

- The mean of x
- The standard deviation of x
- The 90% confidence interval for the next value of x.

Also plot the raw data, $x(k)$.

```
>> x = 100 + 3*randn(1000,1);
>> k = [1:1000]';
>> plot(k,x)
```

7) Filter the data with a FIR filter (the average of the last five data points)

$$
Y=\left(\frac{1}{5}\right)\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}\right) X
$$

For the filtered data (y), determine

- The mean of y
- The standard deviation of y
- The 90% confidence interval for the next value of y

Also plot the filtered data, $\mathrm{y}(\mathrm{k})$

```
\(\gg x=100+3 * r a n d n(1000,1) ;\)
\(\gg y=0 * x\);
>> y(1:4) = 100;
\(>\) for \(k=5: 1000\)
    \(y(k)=\operatorname{mean}(x(k-4: k) ;\)
    end
>> \(k=[1: 1000]\) ';
>> plot (k,y)
```

8) Filter the data with the following low-pass filter:

$$
\begin{array}{ll}
Y=\left(\frac{8}{s^{2}+4 s+8}\right) X & \text { s-plane, poles at } \mathrm{s}=-2+/-\mathrm{j} 2 \\
Y=\left(\frac{0.0008}{z^{2}-1.9600 z+0.9608}\right) X & \text { same filter in the z-plane with T }=10 \mathrm{~ms}
\end{array}
$$

For the filtered data (y), determine

- The mean of y
- The standard deviation of y
- The 90% confidence interval for the next value of y

Also plot the filtered data, $\mathrm{y}(\mathrm{k})$

```
>> x = 100 + 3*randn(1000,1);
>> y = 0*x;
>> y(1:2) = 100;
>> for k=3:1000
    y(k) = 1.9600*y(k-1)-0.9608*y(k-2)+0.0008*x(k-2);
    end
>> k = [1:1000]';
>> plot(k,y)
```

note: You can do a lot better than just taking the average of the last five data points.

