ECE 376 - Homework \#1

PIC Background. Due Wednesday, January 18th

Problem	Answer
1) A PIC's output is limited to 25 mA . Assuming V2 is 5 V , what is the smallest resistance youcan connect to the output? (how small can R3 be?)	200 Ohms
A PIC can measure voltage to 4.88 mV . To give an idea of how small this is....	
2) What is the smallest change in R2 a PIC can measure if R2 $=800$ Ohms nominally? - How much does R2 have to change from 800 Ohms for V1 to change by 4.88 mV ?	3.1678 Ohms
3) Assume R2 is a thermistor. - What temperature is it if $\mathrm{R} 2=800 \mathrm{Ohms}$? - How much does the temperature have to change for V1 to change by 4.88 mV ?	$\begin{aligned} & \mathrm{T}=30.1624 \mathrm{C} \\ & \mathrm{dT}=0.0930 \mathrm{C} \end{aligned}$
A PIC can measure time to 100ns. To give an idea of how small this is....	
4) The fastest hockey puck shot was $110.3 \mathrm{mph}(46.98 \mathrm{~m} / \mathrm{s})$ by Denis Kulyash in 2011. If the puck travels 89 feet to the net (shot from mid-line), - How long does it take to travel to the net? - How much faster would the puck have to travel for it to take 100 ns less to travel this distance?	$\begin{gathered} 0.5774 \mathrm{sec} \\ +0.00000814 \mathrm{~m} / \mathrm{s} \end{gathered}$
5) The world record for a 500 m speed skate is 38.9 seconds (Hasse Borjes in 1970). How far behind would you have to be (in meters) if you cross the finish line 100ns behind Hasse Borjes?	1.29 um
6) Assume for the 555 timer - $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=800, \mathrm{C}=0.22 \mathrm{uF}$ - What frequency does the 555 timer output on pin \#3?	2522.194 Hz
7) What is the smallest change in frequency a PIC can detect? - i.e. how much does the frequency have to change for the period to change by 100 ns ?	0.63598 Hz
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 $=800$ Ohms (nominally). How much does R2 have to change for the period to change by 100 ns ? - i.e. What is the resolution of this circuit when used as an Ohm-meter?	$\mathrm{dR}=+0.32788$ Ohms
9) Replace R2 with a thermistor. How much does the temperature have to change for the period to increase by 100 ns ? - i.e. what is the resolution in degrees C ?	$\mathrm{dT}=0.009644 \mathrm{C}$

A PIC's outputs are limited to $<25 \mathrm{~mA}$ on its I / O pins.

1) Assuming the output V 2 is 5 V , what is the smallest resistance you can connect to an output pin? - i.e. how small can R3 be?

$$
R_{3}=\left(\frac{5 V}{25 m A}\right)=200 \Omega
$$

The smallest resistance you can connect to the output of a PIC is 200 Ohms.
meaning...
If you want to connect an 8 Ohm speaker to a PIC, you need to connect it through a 200 Ohm resistor to limit the current.

A PIC can measure voltage to 4.88 mV . To give an idea of how small this is....

2) What is the smallest change in R2 a PIC can measure if $\mathrm{R} 2=800 \mathrm{Ohms}$ nominally?

- How much does R2 have to change from 800 Ohms for V1 to change by 4.88 mV ?

If R2 $=800 \mathrm{Ohms}$, then

$$
V_{1}=\left(\frac{R_{2}}{R_{2}+1000}\right) 5 \mathrm{~V}=2.2222 \mathrm{~V}
$$

If V1 increases by 4.88 mV , then

$$
V_{1}=2.2271 \mathrm{~V}
$$

R 2 is then

$$
R_{2}=\left(\frac{V_{2}}{5-V_{2}}\right) 1000=803.1678 \Omega
$$

R2 has to change by 3.1678 Ohms for the PIC to detect it
The smallest change in $\mathbf{R 2}$ that a PIC can detect is 3.1678 Ohms
3) Assume R2 is a thermistor with a voltage - resistance relationship of

$$
R_{2}=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C .

- What temperature is it if $\mathrm{R} 2=800$ Ohms?
- How much does the temperature have to change for V 1 to change by 4.88 mV ?

If $\mathrm{R} 2=800 \mathrm{Ohms}$, the temperature is 30.1624 C
If $\mathrm{R} 2=803.1678$ Ohms, the temperature is 30.0695 C
The difference is 0.0930 C

A PIC can detect a temperature change of 0.0930 C

A PIC can measure time to 100 ns . To give an idea of how small this is....

4) The fastest hockey puck shot was $110.3 \mathrm{mph}(46.98 \mathrm{~m} / \mathrm{s})$ by Denis Kulyash in 2011. If the puck travels 89 feet to the net (shot from mid-line),

- How long does it take to travel to the net?
- How much faster would the puck have to travel for it to take 100 ns less to travel this distance?

Time:

$$
t=\left(\frac{27.1272 m}{46.98 m / s}\right)=0.57742018 \text { seconds }
$$

Adding 100ns

$$
t+100 n s=0.57742028 \text { seconds }
$$

The speed is now

$$
v=\left(\frac{27.1272 m}{0.5775208 s}\right)=46.97999186 \mathrm{~m} / \mathrm{s}
$$

The difference in speed (from $46.98 \mathrm{~m} / \mathrm{s}$) is

$$
\delta v=0.00000814 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

If you can measure time to 100 ns , you can measure speed to $0.00000814 \mathrm{~m} / \mathrm{s}$
5) The world record for a 500 m speed skate is 38.9 seconds (Hasse Borjes in 1970). How far behind would you have to be (in meters) if you cross the finish line 100ns behind Hasse Borjes?

$$
d=\left(\frac{500 m}{38.9 s}\right) \cdot 100 n s=0.00000129 m
$$

The 2nd place finisher would be 1.29 um behind to be 100 ns behind

555 Timer Circuits

6) Assume for the 555 timer

$$
\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=800, \mathrm{C}=0.22 \mathrm{uF}
$$

What frequency does the 555 timer output on pin \#3?
The period is

$$
\begin{aligned}
& T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2) \\
& T=396.4802 \mu s \\
& f=\frac{1}{T}=2522.194 H z
\end{aligned}
$$

7) What is the smallest change in frequency a PIC can detect?

- i.e. how much does the frequency have to change for the period to change by 100 ns ?

Increase the period by 100 ns

$$
T+100 n s=396.5802 \mu s
$$

$$
f=\frac{1}{T}=2521.558 \mathrm{~Hz}
$$

The difference in frequency is

$$
\delta f=0.63598 H z
$$

8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.)

Assume R2 = 800 Ohms (nominally). How much does R2 have to change for the period to change by 100ns?

- i.e. What is the resolution of this circuit when used as an Ohm-meter?

$$
T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)
$$

If you add 100 ns to the period

$$
T+100 n s=396.5802 \mu s
$$

then R 2 is

$$
R_{2}=800.32788 \Omega
$$

The change in resistance is

$$
\delta R=0.32788 \Omega
$$

Using a 555 timer, you can measure a change in resistance of 0.32788 Ohms
note: Increase C by 100x and you increase the resolution by 100x

$$
\mathrm{C}=22 \mathrm{uF}
$$

resolution $=0.0032788 \mathrm{Ohms}$
9) With this circuit, you can build a thermometer: replace $R 2$ with a thermistor with a temperture-resistance relationship of

$$
R_{2}=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

- What temperature corresponds to $\mathrm{R} 2=800$ Ohms?
- How much does the temperature have to change for the period to change by 100 ns ?

If $\mathrm{R} 2=800$ Ohms, then the temperature is

$$
{ }^{0} C=30.162439
$$

If $\mathrm{R} 2=800.37288$ Ohms, then the temperature is

$$
{ }^{0} C=30.152795
$$

The difference is the resolution:

$$
\delta^{0} C=0.009644
$$

If C is changed to 22 uF , the resolution is 100 x better

$$
\delta^{0} C=0.00009644
$$

Moral: If you can convert a measurement to time, a PIC can measure it with insane precision.

