ECE 376 - Homework \#3

Binary Inputs, Binary Outputs, and Timing. Due Monday, January 30th
Please make the subject "ECE 376 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Binary Inputs (hardware)

Assume a thermistor has a resistance-temperature relationship of

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

1) Design a circuit which outputs

- 0 V when $\mathrm{T}<-15 \mathrm{C}$
- 5 V when $\mathrm{T}>-15 \mathrm{C}$
$\mathrm{At}=15 \mathrm{C}$, the resistance is 7627 Ohms .
Assume a voltage divider with a 10k resistor

$$
V=\left(\frac{7627 \Omega}{7627 \Omega+10 k \Omega}\right) 5 V=2.1634 V
$$

For the +/- inputs, as temperature goes up

- R goes down
- V goes down
- Output goes up

Connect to the minus input to get this inverse correlation

2) Design a circuit which outputs

- 0V when $\mathrm{T}<-20 \mathrm{C}$
- 5 V when $\mathrm{T}>-15 \mathrm{C}$

This would be a Schmitt trigger. Assume a voltage divider with a 10k resistor
-20C (off)

- $\mathrm{R}=10,285 \mathrm{Ohms}$
- $\mathrm{Vm}=2.5352 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$
-15C (on)
- $\mathrm{R}=7626$ Ohms
- $\mathrm{Vm}=2.1634 \mathrm{~V}$
- $\mathrm{Y}=+5 \mathrm{~V}$

As the input goes down, the output goes up connect to the minus input
The output is set when $\mathrm{Vm}=2.1634 \mathrm{~V}$.
Make the offset 2.1634 V
The gain needed is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in inpu }}\right)=\left(\frac{5 V-0 V}{2.5352 V-2.1634 V}\right)=13.4465
$$

Make the resistor ration $13.44: 1$

3) Design a circuit which outputs

- 5V when $-20 \mathrm{C}<\mathrm{T}<-15 \mathrm{C}$
- 0 V otherwise

Use two comparitors to output

$$
\begin{aligned}
& A=(T>-20 C) \\
& B=(T<-15 C)
\end{aligned}
$$

$\mathrm{Y}=0 \mathrm{~V}$ if either A or B is 0 V
use diodes - if either signal is $0 \mathrm{~V}, \mathrm{Y}=0 \mathrm{~V}$ (actually 0.7 V)
A: Comparitor for T>-20C

- offset voltage $=2.5352 \mathrm{~V}$
- connect to the minus input for $\mathrm{T}>-20 \mathrm{C}$

B: Comparitor for $\mathrm{T}<-15 \mathrm{C}$

- offset voltage $=2.1634 \mathrm{~V}$
- connect to the plus input for $\mathrm{T}>-15 \mathrm{C}$

Binary Outputs

4) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off) and 20 mA (on). Assume the specifications for the LEDs are:

Color	Vf @ 20mA	mcd @ 20 mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

The output is less than 5 V and less than 25 mA . This means you can drive the outputs directly using just a resistor.

$$
\begin{aligned}
& R_{r}=\left(\frac{5 V-2.0 V}{20 m A}\right)=150 \Omega \\
& R_{g}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega \\
& R_{b}=\left(\frac{5 V-3.2 V}{20 m A}\right)=90 \Omega
\end{aligned}
$$

Note: To vary the brightness, you could

- Vary the resistors (hardware solution used in ECE 320)
- Vary the duty cycle (software solution used in ECE 376)

To vary the duty cycle, you turn the pins on and off

- $\mathrm{RC} 2=$ on for 10% of the time makes it look like $\mathrm{Ir}=2.0 \mathrm{~mA}$ (on average)

Anything you can do in hardware, you can do in software (and visa versa)
5) Design a circuit which allows your PIC board to turn on and off a 5W LED. The specs for the LED are:

- $\mathrm{Vf}=6.0-7.0 \mathrm{~V}$
- Current $=700 \mathrm{~mA}$
- 500-600 Lumens (equivalent to a 60 W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823
Assume you have a 6144 NPN transistor:
- max continuous current $=3 \mathrm{~A}$
- current gain $=300$
- $\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$

In this case,

- The voltage is more than 5 V , meaning you need to use a transistor.
- The current is more than 25 mA , meaning you need to use a transistor

Step 1: Find Rc
Assume a 12 V power supply.

$$
R_{c}=\left(\frac{12 V-6.0 V-0.2 V}{700 \mathrm{~mA}}\right)=8.28 \Omega
$$

Step 2: Find Rb
The base current has to be at least 2.33 mA

$$
\begin{aligned}
& \beta I_{b}>I_{c}=700 \mathrm{~mA} \\
& I_{b}>\left(\frac{700 \mathrm{~mA}}{\beta}\right)=2.333 \mathrm{~mA}
\end{aligned}
$$

The base current has to be less than 25 mA (all the PIC can output). Let $\mathrm{Ib}=10 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{10 m A}\right)=430 \Omega
$$

Timing:

6) Write a program which outputs the music note D3 (146.83 Hz)

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

Step 1: Calculate the number of clocks per toggle

$$
\begin{aligned}
& N=\left(\frac{10,000,000}{2 \cdot H z}\right)=34,052.98 \\
& \mathrm{~N}=10 \mathrm{AB}+5 \mathrm{~A}+4 \\
& \mathrm{~A}=14, \mathrm{~B}=243 \text { results in } \mathrm{N}=34,094(0.12 \% \text { too high })
\end{aligned}
$$

Come up with a wait routine that burns 24,053 clocks (or close)
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
org 0x800
call Init
Loop:
incf PORTC,F
call Wait
goto Loop
; --- Subroutines ---
Init:
clrf TRISA
clrf TRISB
clrf TRISC

clrf TRISD
clrf TRISE
movlw 0x0F
movwf ADCON1 ; everyone is binary
return
; Wait 34,053 clocks (actual wait $=15,164$)
Wait:
movlw 14 ; A
movwf CNT1
W1:
movlw 243 ; B
movwf CNTO
W0:

decfsz CNT1, F
goto W1
return

Lab: LED Flashlight

7) Give the flow chart for a program to turn your PIC board into an LED flashlight:

- PORTB = input
- PORTC \& D are output (the LED's)
- RB0: All lights turn off (PORTC $=$ PORTD $=0$);
- RB1: Half of the lights are on $($ PORTC $=0$, PORTD $=255)$
- RB2: All lights are on $($ PORTC $=$ PORTD $=255)$

To save energy, one LED turns off every 500 ms .
Once all LEDs are off, they remain off until RB1 or RB2 are pressed.
8) Write the corresponding assembler code

```
    org 0x800
    movlw 0xFF
    movwf TRISB
    clrf TRISC
    clrf TRISD
    movlw 0x0F
    movwf ADCON1
L1:
    btfsc PORTB,0
    goto L2
    btfsc PORTB,1
    goto L3
    btfsc PORTB,2
    goto L4
    goto L5
L2:
    clrf PORTC
    clrf PORTD
    goto L5
L3:
    clrf PORTC
    movlw 0xFF
    movwf PORTD
    goto L5
L4:
    movlw 0xFF
    movwf PORTC
    movwf PORTD
L5:
    call Wait
L6:
    bcf STATUS,C
    rrcf PORTC,F
    rrcf PORTD,F
    goto L1
```


9) Test your code

- Compile and program your PIC board
- Verify each button's operation

RB0 turns off the LEDs (check)
RB1 turns on PORTD, turns off PORTC (check)
RB2 turns on PORTC and PORTD (check)
When the lights are on, they turn off, one LED every 500 ms (check)
10) (20 points) Demonstration

- In-person of with a video

