
ECE 376 - Homework #4
C Programming and LCD Displays

Please submit as a hard copy or submit on BlackBoard

1)  Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).  

- Use an osiclloscope - or - 

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app
like Piano Tuner

- RC1 is 1/2 the frequency of RC0,  RC2 is 1/4th,  RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =



10,000,000

2⋅Hz




1a)  Counting mod 8

unsigned char i
while(1) {
      i = (i + 1) % 8;
      if(i == 0) PORTC += 1;
      }

f(RC5) = 1220.4Hz

f(RC0) = 32 x f(RC5) = 39,052.8Hz

 clocks / toggleN =



10,000,000

2⋅Hz


 = 128.032

clocks / loopN/8 = 16.004

It takes about 16 clocks to count mod 8

1b)  Counting mod 7

unsigned char i
while(1) {
      i = (i + 1)% 7;
      if(i == 0) PORTC += 1;
      }

f(RC0) = 1023.2Hz

 clocks / toggleN =



10,000,000

2⋅Hz


 = 4866.63

N / 7 = 698.09 clocks / loop

It takes about 698 clocks to count mod 7



1c)  Long Integer Division

   unsigned long int A, B, C;
   unsigned char i;

A = 0x12345678;
B = 0x1234;
while(1) {

       i = (i + 1)% 8;
       if (i == 0) PORTC += 1;
       C = A / B;
       }

 f(RC0) = 389.6Hz

N =



10,000,000

2⋅Hz


 = 12, 833

N/8 = 1604
N/8 − 16 = 1588

It takes about 1588 clocks to do a long integer division

1d)  Floating Point Cosine (need to add #include <math.h> )

float A, B, C;
A = 3.14159265379;
while(1) {

       i = (i + 1)% 8;
       if(i == 0) PORTC += 1;
       C = cos(A);
       }

f(RC0) = 120.6Hz

N =



10,000,000

2⋅Hz


 = 41, 459.37

N

8
− 16 = 5166.42

It takes about 5166 clocks to do a floating point cosine function



Beep

2)  Write a C program which plays 200Hz for 100ms on a speaker

Test Code:

void Beep(void) {
   unsigned int i, j;
   for(i=0; i<800; i++) {
      RC0 = !RC0;
      for(j=0; j<1000; j++);
   }
}

The measured frequency was 311.6Hz.  To make the frequency 200Hz, change the counter for j:

N =



311.6Hz

200Hz


 1000 = 1558

Now the frequency is 200.2Hz.   For 100ms, count to 40

Final Code

void Beep(void) {
   unsigned int i, j;
   for(i=0; i<40; i++) {
      RC0 = !RC0;
      for(j=0; j<1588; j++);
   }
}

3)  Verify the frequency and duration of your note

Frequency = 200.2Hz (from PanoTuner)

Period = 98ms (from an oscilloscope)



$65 Roulette Wheel

4) Give a flow chart for a program which turns your PIC into a Roulette wheel:

On reset, you start with $10 in your bank (which is displayed on the LCD).

The game starts by pressing a button (RB0 .. RB7).  The number you're betting on is the button

you press (0..7).

When you press and release a button, a random number, N, is generated in the range of 0..7.

The PIC will then count (mod 8) on the LCD display 40+N times, with one count every 200ms

Each time you count, a speaker should beep for 100ms at 200Hz (problem #2)

If the final count matches your bet, you win $8.  If not, you lose $1.

The game then repeats.

The LCD displays your bank, the number you're betting on, and the current number on the roulette
wheel 

Start

Initialize Ports

Bank = $10

Wait for button

Wait for release
Generate winning #

Bet = Button

X = 40 + N

Display Ball
Beep & Wait
Decrement X

X = 0?

Win?

Add $8 Sub $1

Display Bank

yes no

yes

no



5) Write the C code for a roulette wheel

Code:

// Global Variables

const unsigned char MSG0[20] = "Bank:           ";
const unsigned char MSG1[20] = "Bet:            ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include        "lcd_portd.c"

void Beep(void) {
   unsigned int i, j;
   for(i=0; i<20; i++) {
      RC0 = !RC0;
      for(j=0; j<1558; j++);
      }
   }

// Main Routine

void main(void)
{
   unsigned int BANK;
   unsigned char N, X, BET;
   unsigned char i, j;

   TRISA = 0;
   TRISB = 0xFF;
   TRISC = 0;
   TRISD = 0;
   TRISE = 0;
   ADCON1 = 0x0F;

   LCD_Init();
   LCD_Move(0,0);  for(i=0; i<16; i++) LCD_Write(MSG0[i]);
   LCD_Move(1,0);  for(i=0; i<16; i++) LCD_Write(MSG1[i]);

   BANK = 10;
   while(1) {
      LCD_Move(0,8);  LCD_Out(BANK, 3, 0);

      while(PORTB == 0);
      while(PORTB) {
         if(RB0) BET = 0;
         if(RB1) BET = 1;
         if(RB2) BET = 2;
         if(RB3) BET = 3;
         if(RB4) BET = 4;
         if(RB5) BET = 5;
         if(RB6) BET = 6;
         if(RB7) BET = 7;
         N = (N + 1)%8;
         }
      LCD_Move(1,8);  LCD_Out(BET, 3, 0);

// Easter Egg:  4 always wins
      if(BET == 4) X = 4;



      for(X=0; X<40+N; X++) {
         LCD_Move(1,12); LCD_Out(X%8, 3, 0);
         Beep();
         Wait_ms(100);
         }

      X = X % 8;

      LCD_Move(1,12); LCD_Out(X, 3, 0);
      if(X == BET) BANK += 8;
      else BANK -= 1;

      }
   }

6) Verify your program

On reset, you start with $10 in your bank

Check - bank starts at $10

Numbers generated are random, in the range of 0..7

Check:  winning numbers were always in the range of 0..7

The LCD displays information correctly

Bank balance is correct

Number betting on is correct

Current number (X) is displayed

When you win, you gain $8.  When you lose, you lose $1.

Check:  most of the time the two numbers don't match and I lose $1

Once in a while, they do match and I win $8.

7) (20pt) Demonstration (in person or on a video)  (1563 lines of assembly)

Memory Summary:

    Program space        used   C36h (  3126) of 10000h bytes   (  4.8%)
    Data space           used    2Ch (    44) of   F80h bytes   (  1.1%)
    EEPROM space         used     0h (     0) of   400h bytes   (  0.0%)
    ID Location space    used     0h (     0) of     8h nibbles (  0.0%)
    Configuration bits   used     0h (     0) of     7h words   (  0.0%)




