ECE 376 - Homework #4

C Programming and LCD Displays
Please submit as a hard copy or submit on BlackBoard

1) Determine how many clocks the following C code takes to execute
Compile and download the code (modify working code and replace the main loop)
Measure the frequency you see on RCO (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RCO with a 200 Ohm resistor and measure the frequency with a cell phone app
like Piano Tuner

- RCl is 1/2 the frequency of RCO, RC2 is 1/4th, RC3 = 1/8th, etc
« The number of clocks it takes to execute each loop is

10,000,000

2-Hz

la) Counting mod 8

unsigned char i

while (1) {
i=(1+ 1) % 8;
if(i == 0) PORTC += 1;

}
f(RC5) = 1220.4Hz

f(RCO) =32 x f(RC5) = 39,052.8Hz

N= (%ﬂ) = 128.032 clocks / toggle

N/8 =16.004 clocks / loop

It takes about 16 clocks to count mod 8

1b) Counting mod 7

unsigned char i

while (1) {
i=(i+ 1% 7;
if (i == 0) PORTC += 1;

}
f(RCO) = 1023.2Hz

N = (%}W) =4866.63 clocks / toggle

N/7=698.09 clocks / loop
It takes about 698 clocks to count mod 7

Ic) Long Integer Division

unsigned long int A, B, C;
unsigned char i;

A = 0x12345678;

B = 0x1234;

while (1) {
i=(i+1)% 8;
if (i == 0) PORTC += 1;
C =2/ B;

f(RCO) = 389.6Hz
N= (W) ~ 12,833

2-Hz
N/8 = 1604
N/8 —16 =1588

It takes about 1588 clocks to do a long integer division

1d) Floating Point Cosine (need to add #include <math.h>)

float A, B, C;
A = 3.14159265379;

while (1) {
i = (i1 + 1)% 8;
if (1 == 0) PORIC += 1;
C = cos(A);
}

f(RCO) = 120.6Hz

N= (W) = 41,459.37

2-Hz
$-16=5166.42

It takes about 5166 clocks to do a floating point cosine function

Beep
2) Write a C program which plays 200Hz for 100ms on a speaker

Test Code:

void Beep (void) {
unsigned int i, 3;
for (i=0; 1<800; i++) {
RCO = !RCO;
for (3j=0; 3<1000; J++);

}
The measured frequency was 311.6Hz. To make the frequency 200Hz, change the counter for j:

N= (3“~6HZ) 1000 = 1558

200Hz

Now the frequency is 200.2Hz. For 100ms, count to 40

Final Code

void Beep (void) {
unsigned int i, 7J;
for (1=0; 1<40; 1i++) {
RCO = !RCO;
for (3j=0; 3j<1588; j++);

3) Verify the frequency and duration of your note
Frequency = 200.2Hz (from PanoTuner)

Period = 98ms (from an oscilloscope)

oC 1k move Normal
svaw 10mSsaiv TV T Y

$65 Roulette Wheel

4) Give a flow chart for a program which turns your PIC into a Roulette wheel:
On reset, you start with $10 in your bank (which is displayed on the LCD).

The game starts by pressing a button (RBO .. RB7). The number you're betting on is the button
you press (0..7).

When you press and release a button, a random number, N, is generated in the range of 0..7.
The PIC will then count (mod 8) on the LCD display 40+N times, with one count every 200ms
Each time you count, a speaker should beep for 100ms at 200Hz (problem #2)
If the final count matches your bet, you win $8. If not, you lose $1.
The game then repeats.
« The LCD displays your bank, the number you're betting on, and the current number on the roulette

wheel

Initialize Ports
Bank = $10

Display Bank
Wait for button

A
Wait for release
Generate winning #

Bet = Button

X=40+N

Display Ball
Beep & Wait
Decrement X

5) Write the C code for a roulette wheel

Code:
// Global Variables

const unsigned char MSGO[20] = "Bank: ",
const unsigned char MSG1[20] = "Bet: ",

// Subroutine Declarations
#include <picl8.h>

// Subroutines
#include "lcd_portd.c"

void Beep (void) {
unsigned int i, 7J;
for (1=0; 1<20; 1i++) {
RCO = !RCO;
for (3j=0; 3j<1558; j++);
}
}

// Main Routine

void main (void)

{
unsigned int BANK;
unsigned char N, X, BET;
unsigned char i, 3j;

TRISA = 0;
TRISB = OxFF;
TRISC = 0;
TRISD = 0;

TRISE = 0;
ADCON1 = 0xO0F;

LCD_Init () ;
LCD_Move (0,0); for(i=0; i<16; i++) LCD_Write (MSGO[i]);
LCD_Move (1,0); for(i=0; i<16; i++) LCD_Write (MSG1[i]);

BANK = 10;
while (1) {
LCD_Move (0,8); LCD_Out (BANK, 3, 0);

PORTB ==
while (PORTB) {

~
~.

(

(
if (RBO) BET = 0;
if (RB1) BET = 1;
if (RB2) BET = 2;
if (RB3) BET = 3;
if (RB4) BET = 4;
if (RB5) BET = 5;
if (RB6) BET = 6;
if (RB7) BET = 7;
N = (N + 1)3%8;

LCD_Move (1,8); LCD_Out (BET, 3, 0);

// Easter Egg: 4 always wins
if (BET == 4) X = 4;

for (X=0; X<40+N; X++) {
LCD_Move (1,12); LCD_Out (X%8, 3,
Beep () ;
Wait_ms (100);
}

X =X % 8;

LCD_Move (1,12); LCD_Out (X, 3, 0);

if (X == BET) BANK += 8;
else BANK —-= 1;
}

6) Verify your program

On reset, you start with $10 in your bank

Check - bank starts at $10

Numbers generated are random, in the range of 0..7

The LCD displays information correctly

Bank balance is correct
Number betting on is correct

Current number (X) is displayed

0);

When you win, you gain $8. When you lose, you lose $1.

Once in a while, they do match and I win $8.

Check: winning numbers were always in the range of 0..7

Check: most of the time the two numbers don't match and I lose $1

7) (20pt) Demonstration (in person or on a video) (1563 lines of assembly)

Memory Summary:

Program space used C36h (
Data space used 2Ch (
EEPROM space used Oh (
ID Location space used Oh (

(

Configuration bits used Oh

of 10000h
of F80h
of 400h
of 8h
of Th

bytes
bytes
bytes
nibbles
words

O O O Wb
o e e e

o\

o\

o\

O O O
o\
_—— — — —

o\

