ECE 376 - Homework \#6

Chi-squared Test. Due Monday, February 27th
Please email to jacob.glower@yahoo.com, or submit as a hard copy, or submit on BlackBoard

Fair Dice

1) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RB0);
    while(RBO) DIE = (DIE + 1) % 6;
    DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

Step 1: Collect data. I rolled the dice 60 times and got the following results

Roll	1	2	3	4	5	6
Frequency	11	7	9	7	14	12

Step 2: Compute the chi-squared value

Roll	p	np	N	chi-squared
1	$1 / 6$	10	11	0.1
2	$1 / 6$	10	7	0.9
3	$1 / 6$	10	9	0.1
4	$1 / 6$	10	7	0.9
5	$1 / 6$	10	14	1.6
6	$1 / 6$	10	12	0.4

Step 3: Convert the chi-squared score to a probability using a chi-squared table

- Six bins means five degrees of freedom
- From StatTrek, p $=0.45058$

I am 45.058% certain that this die is not fair

- there is no evidence to say I'm not just guessing (probability < 0.99)
- there is no evidence to say that I rigged the experiment (probability >0.01)

Loaded Dice

2) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:
```
while(1) {
    while(!RB0);
    while(RBO) {
        DIE = (DIE + 1) % 6;
        X = (X + 1) % 101;
        }
    DIE = DIE + 1;
    if(X < 15) DIE = 6;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

Step 1: Collect data. I rolled the dice 60 times and got the following results

Roll	1	2	3	4	5	6
Frequency	10	9	6	8	6	21

Step 2: Compute the chi-squared value

Roll	p	np	N	chi-squared
1	$1 / 6$	10	10	0
2	$1 / 6$	10	9	0.1
3	$1 / 6$	10	6	1.6
4	$1 / 6$	10	8	0.4
5	$1 / 6$	10	6	1.6
6	$1 / 6$	10	21	12.1

Step 3: Convert the chi-squared score to a probability using a chi-squared table

- Six bins means five degrees of freedom
- From StatTrek, p(reject) $=99.256 \%$

I am 99.256% certain that this die is not fair

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.
Chi-square critical value (x) \square

Probability: $P\left(X^{2} \leq 15.8\right)$ \square

Probability: $P\left(X^{2} \geq 15.8\right)$ \square

Am I Psychic?

3) Write a C program which tests if you're psychic:

- Each round, predict which number is going to come up (0..3)
- Press the corresponding button RB0..RB3.
- When you release the button, a random number in the range of $0 . .3$ is generated
- If you were right, the PIC records that. Likewise if you were wrong.
- The LCD display displays how many times you were right and wrong.

```
// Global Variables
const unsigned char MSGO[21] = "Right
const unsigned char MSG1[21] = "Wrong
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// Main Routine
void main(void)
{
    unsigned int i, j;
    int GUESS, X, RIGHT, WRONG;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    TRISE = 0;
    TRISA = 0;
    ADCON1 = 15;
    PORTA = 0;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSGO[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
    X = 0;
    RIGHT = 0;
    WRONG = 0;
    while(1) {
        while(PORTB == 0);
        while(PORTB) {
                if(RBO) GUESS = 0;
                if(RB1) GUESS = 1;
                if(RB2) GUESS = 2;
                if(RB3) GUESS = 3;
                X = (X + 1)%4;
        }
        if(GUESS == X) RIGHT += 1;
        else WRONG += 1;
        LCD_Move(0,8); LCD_Out(RIGHT, 3, 0);
        LCD_Move(1,8); LCD_Out(WRONG, 3, 0);
    }
}
```

4) Collect data with your program.

Right	Wrong
15	49

5) Determine the chance that you were not just guessing using a chi-squared test

- Null hypothesis: you are just guessing (correct 25% of the time).

Guess	p	np	N	chi-squared
Right	$1 / 4$	16	15	0.06
Wrong	$3 / 5$	48	49	0.02
		Total	$\mathbf{0 . 0 8}$	

From StatTrek, a chi-squared score of 0.08 with one degree of freedom corresponds to a probability of 0.2227

I am 22.27% certain that I'm not just guessing

- there is no evidence to say I'm not just guessing (probability <0.99)
- there is no evidence to say that I rigged the experiment (probability >0.01)

