
ECE 376 - Homework #8
Timer 2 Interrupts. Due Monday, March 27th, 2023

Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Measuring Time to 1ms with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 1ms

Time is measured to 1ms using Timer2 interrupts

Each interrupt, pin RC0 is toggled (outputting a 500Hz square wave on RC0)

Each interrupt (every 1ms), TIME is decremented to zero, stopping at zero

TIME is displayed on the LCD display to 1ms: xx.xxxx

When you press RB0, the time is reset to 5.000 seconds

When you press RB1, the time is reset to 10.000 seconds

When you press RB2, the time is reset to 15.000 seconds

When you press RB3, the time is reset to 20.000 seconds

Check the accuracy of your stopwatch

Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter

works)

Code: Starting on the rising edge of the button press
// Global Variables

const unsigned char MSG0[21] = "1ms Timer ";
const unsigned char MSG1[21] = "Time: ";

unsigned int TIME;

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

Risng Edge Falling Edge

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 RA1 = !RA1;
 if(TIME) TIME -= 1;
 else {
 if(RB0) TIME = 5000;
 if(RB1) TIME = 10000;
 if(RB2) TIME = 15000;
 if(RB3) TIME = 20000;
 }
 TMR2IF = 0;
 }
 }

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 RA1 = !RA1;
 if(TIME) TIME -= 1;
 if(RB0) TIME = 5000;
 if(RB1) TIME = 10000;
 if(RB2) TIME = 15000;
 if(RB3) TIME = 20000;
 TMR2IF = 0;
 }
 }

// Main Routine

void main(void)
{
 unsigned char i;
 unsigned int j;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;

 ADCON1 = 0x0F;

 TIME = 0;

 LCD_Init(); // initialize the LCD

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);

 Wait_ms(100);

// set up Timer2 for 1ms
 T2CON = 0x4D;
 PR2 = 249;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
GIE = 1;

 while(1) {
 LCD_Move(1, 8); LCD_Out(TIME, 5, 3);
 }
 }

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1-string banjo using Timer2 interrupts

Play note frequency of music note D2 (73.42Hz) on pin RC0 when button RB0 is pressed

Check the accuracy of your music note using your cell phone (or whatever else you have on hand)

note: You might need to use a coutner and toggle RC0 every 4th interrupt.

Calculations: To generate 73.42Hz

N =



10,000,000

2⋅Hz


 = 68, 101.33

That's bigger than the maximum value of A*B*C, so toggle RC0 every other interrupt

N/2 = 34, 050.66

One combination of A*B*C that's close is

A = 14, B = 152, C = 16

A*B*C = 34,048 (-0.0078% low)

T2CONis

T2CON = 0x6F

7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1

A = 14 C = 16

The C code is then
// Global Variables

const unsigned char MSG0[21] = "1-String Banjo ";
const unsigned char MSG1[21] = " ";

unsigned int TIME, N;

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 N = (N + 1)%2;
 if(N == 0) {
 if(RB0) RA1 = !RA1;
 }
 }
 TMR2IF = 0;
 }

// Main Routine

void main(void)
{
 unsigned char i;
 unsigned int X;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;

 ADCON1 = 0x0F;

 TIME = 0;

 LCD_Init(); // initialize the LCD

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);

 Wait_ms(100);

// set up Timer2 for 1ms
 T2CON = 0x6F;
 PR2 = 151;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

 while(1) {
 X = X + 1;
 LCD_Move(1, 8); LCD_Out(X, 3, 1);
 Wait_ms(100);
 }
 }

Reflex Timer

Problem 3-7) Build an embedded system which measures your reflex time:

Start a given trial by pressing and releasing RB0

Once pressed, the PIC waits between 3.00 and 7.00 seconds (random)

After that time, all of the lights on PORTA turn on.

When the lights on PORTA turn on, press RB0 again.

The time delay from when the lights turn on and you press RB0 is then recorded and displyed on

the LCD.

3) Write a flow-chart for this program

note: you should have two flow charts: one for the main routine, one for the interrupt

PORTB = Input

Start

PORTA/B/D = Output

Timer2 = 0.1ms

Wait for RB0

Press & Release

Wait 3-7 sec

Turn on lights

TIME = 0

RB0 Pressed?

Record & Display

TIME

Turn off lights

Every 100us

Timer2

Increment TIME

Exit

4) Write the corresponding C code
// Global Variables

const unsigned char MSG0[21] = "Reflex Time ";
const unsigned char MSG1[21] = "Time = ";

unsigned int TIME;

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 RC0 = !RC0;
 TIME = TIME + 1;
 TMR2IF = 0;
 }
}

// Main Routine

void main(void)
{
 unsigned char i;
 unsigned int T0, T1, dT;
 unsigned int DELAY;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;

 ADCON1 = 0x0F;

 TIME = 0;

 LCD_Init(); // initialize the LCD

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);

 Wait_ms(100);

// set up Timer2 for 0.1ms
 T2CON = 0x05;
 PR2 = 249;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

 while(1) {
 PORTA = 0;
 PORTE = 0;
 while(!RB0);
 RE0 = 1;
 while(RB0) DELAY = (DELAY + 1)%4000;
 Wait_ms(DELAY + 3000);
 PORTA = 0xFF;
 TIME = 0;
 while(!RB0);
 dT = TIME;
 LCD_Move(1,8); LCD_Out(dT, 6, 4);
 Wait_ms(1000);
 }
 }

5) Collect data on your reaction time

Reflex Times: (Monday, 3:03pm): {0.1883, 0.1819, 0.1844, 0.1824, 0.1994}

6) (Population A): From your data, determine

The 90% confidence interval for your reaction time, and

The probability that your next trial will be less than 200ms

The probability tht your average reaction time is less than 200ns

From Matlab

mean(A) = 0.1873

std(A) = 0.0072

From a t-Table with 4 degrees of freedom, 5% tails corresponds to a t-score of 2.1318. The 90%

confidence interval for the nex reading is:

>> Xa + 2.1318*Sa
 0.2027

>> Xa - 2.1318*Sa
 0.1719

The probability that my next reaction will be less than 200ms:

The t-score is:

>> t = (0.2 - Xa) / Sa
t = 1.7598

From a t-Table with 4 degrees of freedom, this corresponds to a probability of 9%

There is a 9% chance my next reaction time will be more than 200ms

The probability that my average reaction time is less than 200ms (population) is:

>> t = (0.2 - Xa) / (Sa / sqrt(5))

t = 3.9350

From a t-table with 4 degrees of freedom, this corresponds to a probability of 0.009

There is a 99.1% chance that my average reaction time is less than 200ms

7) (Population B): Change something: Record my reaction time a week later after some tea:

Data: {0.1725, 0.1610, 0.1890, 0.1783, 0.1793}

8) Determine the probability that

A will have a lower reaction time than B in the next trial

A has a lower average rection time than B

>> A = [0.1883, 0.1819, 0.1844, 0.1824, 0.1994];
>> Xa = mean(A);
>> Sa = std(A);

>> B = [0.1725, 0.1610, 0.1890, 0.1783, 0.1793];
>> Xb = mean(B);
>> Sb = std(B);

Form a new variable, W = A - B. The mean and standard deviation (individual) are:

>> Xw = Xa - Xb

Xw = 0.0113

>> Sw = sqrt(Sa^2 + Sb^2)

Sw = 0.0126

The t-score for A > B (W > 0) is:

>> tw = Xw / Sw

tw = 0.8962

With four degrees of freedom, this corresponds to a probability of 0.25 for the tail

There is a 75% chance that A > B

my reaction time was better in the morning after tea

 For a population, the standard deviation and t-score are:

>> Sw = sqrt(Sa^2 / 5 + Sb^2 / 5)

Sw = 0.0056

>> tw = Xw / Sw

tw = 2.0040

From a t-table with 4 degrees of freedom, this corresponds to a probabilty of 0.06 for the tail

There is a 94% chance that the mean of A is greater than the mean of B

my overall reaction time is better in the morning than in the afternoon

on average, my reaction time in the morning is 11.3ms faster than in the afternoon

