ECE 376 - Homework \#8

Timer 2 Interrupts. Due Monday, March 27th, 2023
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

Measuring Time to $\mathbf{1 m s}$ with Timer2 Interrupts

1) Write a routine for a count-down timer with a resolution of 1 ms

- Time is measured to 1 ms using Timer2 interrupts
- Each interrupt, pin RC0 is toggled (outputting a 500 Hz square wave on RC 0)
- Each interrupt (every 1 ms), TIME is decremented to zero, stopping at zero
- TIME is displayed on the LCD display to 1 ms : xx.xxxx
- When you press RB0, the time is reset to 5.000 seconds
- When you press RB1, the time is reset to 10.000 seconds
- When you press RB2, the time is reset to 15.000 seconds
- When you press RB3, the time is reset to 20.000 seconds

Check the accuracy of your stopwatch

- Measure the frequency on RC0 when sent to a speaker using a cell phone app (Frequency Counter works)

Code: Starting on the rising edge of the button press

```
// Global Variables
const unsigned char MSGO[21] = "1ms Timer ";
unsigned int TIME;
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include
"lcd_portd.c"
    // High-priority service // High-priority service
    void interrupt IntServe(void) void interrupt IntServe(void)
    {
        if (TMR2IF) {
            RA1 = !RA1;
            if(TIME) TIME -= 1;
            else {
                if(RBO) TIME = 5000;
                    if(RB1) TIME = 10000;
                    if(RB2) TIME = 15000;
                if(RB3) TIME = 20000;
            }
            TMR2IF = 0;
                }
            }
// Main Routine
void main(void)
{
    unsigned char i;
    unsigned int j;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0
    TRISE = 0;'
    ADCON1 = 0x0F;
    TIME = 0;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write (MSG0[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
    Wait_ms(100);
// set up Timer2 for 1ms
    T2CON = 0x4D;
    PR2 = 249;
    TMR2ON = 1;
    TMR2IE = 1;
    TMR2IP = 1;
    PEIE = 1;
// turn on all interrupts
GIE = 1;
    while(1) {
        LCD_Move(1, 8); LCD_Out(TIME, 5, 3);
        }
        }
```

 Risng Edge Falling Edge

Generating Frequencies with Timer2 Interrupts

2) Write a routine which turns plays your PIC into a 1 -string banjo using Timer2 interrupts

- Play note frequency of music note $\mathrm{D} 2(73.42 \mathrm{~Hz})$ on pin RC0 when button RB0 is pressed
- Check the accuracy of your music note using your cell phone (or whatever else you have on hand)
- note: You might need to use a coutner and toggle RC0 every 4th interrupt.

Calculations: To generate 73.42 Hz

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=68,101.33
$$

That's bigger than the maximum value of $A * B * C$, so toggle $R C 0$ every other interrupt

$$
N / 2=34,050.66
$$

One combination of $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ that's close is

- $\mathrm{A}=14, \mathrm{~B}=152, \mathrm{C}=16$
- $\mathrm{A} * \mathrm{~B} * \mathrm{C}=34,048$ (-0.0078% low)

T2CONis

T2CON $=0 \times 6 \mathrm{~F}$								
7	6	5	4	3	2	1	0	
0	1	1	0	1	1	1	1	
$\mathrm{~A}=14$								

The C code is then

```
// Global Variables
Const unsigned char MSGO[21] = "1-String Banjo ";
unsigned int TIME, N;
// Subroutine Declarations
#include <picl8.h>
// Subroutines
#include "lcd_portd.c"
// High-priority service
void interrupt IntServe(void)
{
    if (TMR2IF) {
            N=(N + 1) % 2;
            if(N == 0) {
                    if(RB0) RA1 = !RA1;
                    }
            }
        TMR2IF=0;
        }
// Main Routine
void main(void)
voi
    unsigned char i;
    unsigned int X;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0; 
    ADCON1 = 0x0F;
    TIME = 0;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
    Wait_ms(100);
// set up Timer2 for 1ms
        T2CON = 0x6F;
        PR2 = 151;
        TMR2ON = 1;
        TMR2IE = 1;
        TMR2IP = 1;
        PEIE = 1;
// turn on all interrupts
        GIE = 1;
        while(1) {
                X = X + 1;
                LCD_Move(1, 8); LCD_Out (X, 3, 1);
                Wait_ms(100);
                }
        }
```


Reflex Timer

Problem 3-7) Build an embedded system which measures your reflex time:

- Start a given trial by pressing and releasing RB0
- Once pressed, the PIC waits between 3.00 and 7.00 seconds (random)
- After that time, all of the lights on PORTA turn on.
- When the lights on PORTA turn on, press RB0 again.
- The time delay from when the lights turn on and you press RB0 is then recorded and displyed on the LCD.

3) Write a flow-chart for this program
note: you should have two flow charts: one for the main routine, one for the interrupt

4) Write the corresponding C code

```
// Global Variables
const unsigned char MSGO[21] = "Reflex Time ";
unsigned int TIME;
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// High-priority service
void interrupt IntServe(void)
{
    if (TMR2IF) {
            RCO = !RCO;
            TIME = TIME + 1;
            TMR2IF = 0;
            }
}
// Main Routine
void main(void)
unsigned char i;
    unsigned int T0, T1, dT;
    unsigned int DELAY;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    TRISD = 0;
    ADCON1 = 0x0F;
    TIME = 0;
    LCD_Init(); // initialize the LCD
    LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSGO[i]);
    LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);
    Wait_ms(100);
// set up Timer2 for 0.1ms
        T2CON = 0x05;
        PR2 = 249;
        TMR2ON = 1;
        TMR2IE = 1;
        TMR2IP = 1;
        PEIE = 1;
// turn on all interrupts
        GIE = 1;
        while(1) {
            PORTA = 0;
            PORTE = 0;
            while(!RBO);
            REO = 1;
            while(RBO) DELAY = (DELAY + 1)%4000;
            Wait_ms(DELAY + 3000);
            PORTA = 0xFF;
            TIME = 0;
            while(!RBO);
            dT = TIME;
            LCD_Move(1,8); LCD__Out(dT, 6, 4);
            Wait_ms(1000);
            }
        }
```


5) Collect data on your reaction time

Reflex Times: (Monday, 3:03pm): \{0.1883, 0.1819, $0.1844,0.1824,0.1994\}$

6) (Population A): From your data, determine

- The 90% confidence interval for your reaction time, and
- The probability that your next trial will be less than 200 ms
- The probability tht your average reaction time is less than 200 ns

From Matlab

- $\operatorname{mean}(A)=0.1873$
- $\operatorname{std}(\mathrm{A})=0.0072$

From a t-Table with 4 degrees of freedom, 5% tails corresponds to a t-score of 2.1318 . The 90% confidence interval for the nex reading is:

```
>> Xa + 2.1318*Sa
    0.2027
>> Xa - 2.1318*Sa
    0.1719
```

The probability that my next reaction will be less than 200 ms :
The t-score is:

```
>> t = (0.2 - Xa) / Sa
t = 1.7598
```

From a t-Table with 4 degrees of freedom, this corresponds to a probability of 9%
There is a 9% chance my next reaction time will be more than 200 ms

The probability that my average reaction time is less than 200 ms (population) is:

```
>> t = (0.2 - Xa) / ( Sa / sqrt(5) )
t = 3.9350
```

From a t-table with 4 degrees of freedom, this corresponds to a probability of 0.009
There is a $\mathbf{9 9 . 1 \%}$ chance that my average reaction time is less than 200 ms
7) (Population B): Change something: Record my reaction time a week later after some tea:

- Data: $\{0.1725,0.1610,0.1890,0.1783,0.1793\}$

8) Determine the probability that

- A will have a lower reaction time than B in the next trial
- A has a lower average rection time than B

```
>> A = [0.1883, 0.1819, 0.1844, 0.1824, 0.1994];
>> Xa = mean(A);
>> Sa = std(A);
>> B = [0.1725, 0.1610, 0.1890, 0.1783, 0.1793];
>> Xb = mean(B);
>> Sb = std(B);
```

Form a new variable, $\mathrm{W}=\mathrm{A}-\mathrm{B}$. The mean and standard deviation (individual) are:

```
>> Xw = Xa - Xb
Xw}=0.011
>> Sw = sqrt(Sa^2 + Sb^2)
Sw = 0.0126
```

The t -score for $\mathrm{A}>\mathrm{B}(\mathrm{W}>0)$ is:

```
>> tw = Xw / Sw
tw = 0.8962
```

With four degrees of freedom, this corresponds to a probability of 0.25 for the tail

There is a 75\% chance that $\mathrm{A}>\mathrm{B}$

my reaction time was better in the morning after tea

For a population, the standard deviation and t-score are:

```
>> Sw = sqrt(Sa^2 / 5 + Sb^2 / 5)
SW = 0.0056
>> tw = Xw / Sw
tw = 2.0040
```

From a t-table with 4 degrees of freedom, this corresponds to a probabilty of 0.06 for the tail
There is a $\mathbf{9 4 \%}$ chance that the mean of A is greater than the mean of B my overall reaction time is better in the morning than in the afternoon on average, my reaction time in the morning is 11.3 ms faster than in the afternoon

